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CHAPTER XXXVIII 
 

ON THE ‘WORLD’ OF MINKOWSKI 
 

 
Moreover, the really fundamental things have a way of appearing to be simple 

once they have been stated by a genius, who was in this case Minkowski. 
(431)  G. Y. RAINICH 

 
We have already freely used the structural term ‘dimension’ and only hinted at 

its meanings. Before we approach the Minkowski world we must summarize 
roughly what for our purpose we should know about dimensions. 

There is nothing mysterious about the term ‘dimension’. First of all, the 
dimensionality of a manifold is not inherent in the manifold as such. It is a 
characteristic of order and so of structure. A manifold can be ordered in different 
ways, so that it follows that one manifold may have different dimensionality, 
depending on how we order it. 

A manifold which has linear order and structure is called one-dimensional. A 
two-dimensional manifold is then a linearly ordered manifold of linearly ordered 
manifolds, . 

Usually we speak about our ‘space’ of daily experiences as a three-dimensional 
manifold, but this is true only with reference to points, and not true with reference to 
lines or spheres. The manifold of all spheres in ‘space’ is, for instance, a four-
dimensional manifold; so also is a manifold of lines. 

Let us explain the line-dimensionality of our ‘space’ in terms of lines. A line can 
be given by two points—one, let us say, in the floor of our room, the other in the 
ceiling. Each of these points is given by two co-ordinates; it has two degrees of 
freedom; and so our ‘space’ is a four-dimensional (2×2) manifold in lines. This 
means that to distinguish any line in our ‘space’ from any other line we would have 
to have four data. Similarly, if we deal with spheres, a manifold made up of spheres 
requires four data, three for locating the centre and one giving the radius of the 
sphere. The above examples, of course, do not exhaust the structural possibilities.1 

The term ‘dimension’ does not apply solely to what we call ‘space’. The term 
applies to any manifold which we can order in some particular way. Manifolds or 
aggregates abound everywhere in our lives. The domain of colours, for instance, is a 
manifold; and so is the domain of tone, or of remembrances , . No manifold in itself 
has any dimensionality. To ascribe dimensionality to the manifold we must first 
order it and the number of its dimensionality, or its ascribed or discovered structure, 
may differ according to the principle of ordering used. 

In discussing dimensionality we have two purposes. First, to dispel the semantic 
fright about this simple term; and, second, to suggest means for visualization, which 
for our purpose are of great neurological importance. 

When we say that the world is structurally a four-dimensional manifold, we 
mean only that according to our experience and the structure of our nervous 
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system, the world of our experience is represented by a fourfold order. We can order 
the events as to the right and to the left, forward and backward, up and down, and 
sooner and later. In our experience this fourfold order is completely united, and 
cannot be separated unless we deliberately choose to neglect some of these 
orderings. 

Nor does it mean that all these dimensions are ‘identical’. We are accustomed, 
for instance, to consider the three dimensions of ‘space’ as ‘identical’, or at least 
equivalent. Is this true in life ? Can we disregard, for instance, the structural 
difference between vertical and horizontal ? If we did, quite probably, as Eddington 
remarks, we should come to an untimely end, and break our necks. 

Obviously if we visualize our plenum, as made up of lines or particles, by 
necessity we visualize structurally a four-dimensional manifold. It should be noticed 
that a four-dimensional ‘absolute void’, or ‘absolute nothingness’, besides being 
non-sense, cannot be visualized at all, because it could have no structure. 

We see that all metaphysical ‘fourth dimensions’ are not only non-sense, but 
usually indicate a pathological semantic disturbance. The intensity of such 
disturbances is often high, because it is entirely impossible for a sane person to deal 
with such meaningless noises. The victim is obsessed with attempts to do the 
impossible,—a semantically hopeless and painful task. 

Such objectifications of terms are very dangerous and science should try, by 
proper emphasis, to eliminate them. Outside of science the term ‘dimension’ has no 
meaning and ought to be definitely abandoned in our speculations, for the sake of 
sanity. 

The notion of ‘time’ as a ‘fourth dimension’ is by no means new. It appeared in 
a vague form centuries ago. The notion however was not formulated properly, and 
therefore was unworkable. Instead of helping science, it only hindered it. 

Inspired by Einstein’s work, the mathematician Minkowski, whose work had 
been mainly in the theory of numbers, began to work at the theory of manifolds of 
any number of dimensions. In 1908 he delivered his famous and semantically 
epoch-making address on Space and Time which fused geometry and physics 
structurally. In this address he insisted that the connection between ‘space’ and 
‘time’ as given by the Lorentz-Einstein formulae is not accidental but exhibits that 
inner connection or structure to which we had not paid enough attention.2 

In our experience, ‘space’ and ‘time’ can never be entirely separated, as already 
explained, and so Minkowski combined them into a higher entity which is called the 
‘Minkowski world’. In the world of experience the datum appears to be, not a place 
and a point of ‘time’, but the event or the world point—that is, a place at a definite 
date. 

The graphic picture of a moving point is a world-line. Rectilinear uniform 
motion corresponds then to a straight world-line; accelerated motion, to one that is 
curved. 
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The event is the most elementary notion. We shall use it from now on in this 
work in the sense of a four-dimensional volume of space-time which is small in all 
four dimensions. We do not posit whether events themselves have structure or not, 
but it is preferable to assume that they have no space-time structure, which means 
that the event has no parts which are external to each other in space-time. The order 
of events is fourfold, as previously shown. 

The aggregate or manifold of all point-events is then called the world. The point-
events are given by four numbers representing the co-ordinates, three giving the 
‘space’ co-ordinates, and the fourth the ‘time’ co-ordinate. 

The term ‘space-time continuum’ or ‘space-time manifold’ is used often and 
implies that the numbers x, y, z, t, are to vary continuously. 

In such a space-time continuum all happenings are structurally the intersections 
of world-lines, and if we could describe the world-lines of all points of the universe 
we would have a full account of the universe, ‘past’ and ‘future’. We see that all 
physics, with the rest of our problems, must then be considered as a chapter of the 
general structural and semantic study of continuous manifolds of four dimensions. 

But we are already acquainted with such theories. For instance, the internal 
theory of surfaces may be considered as a part of the subject in two and three 
dimensions. We have seen that different surfaces are characterized by the expression 
for the line element ds2=g11dx12+2g12dx1dx2+g22dx22, or by that group of 
transformations which leaves the line element invariant. We know already that in 
the [E] as well as riemannian geometries we have similar expressions and 
characteristic transformations. 

If physics is to be considered a branch of the theory of four-dimensional 
manifolds, we should naturally look for some such transformations. The manifold 
represents the world, the generalized* theory of relativity gives the desired answer. 
Minkowski proposed a postulate, which he calls the postulate of an absolute world, 
or the world-postulate which asserts the invariance of all the laws of nature in 
relation to linear transformations, for which the function x2+y2+z2-c2t2 is invariant 

The reader is already familiar with the expression x2+y2, which gives the 
invariant length in [E] geometry in two dimensions, and x2+y2+z2 which gives it in 
three dimensions. It would be natural to expect that in four dimensions we should 
have an expression of the type x2+y2+z2+t2 but in this case our expression is 
x2+y2+z2-c2t2. It should be noticed that the above different types of expressions 
have different origins. The first two arise in pure geometry, and the last has its roots 
in physics. The problem was to bring an experimental expression into harmony with 
a familiar geometrical expression. Minkowski introduced the expression ict=u4, 
where i is as usual the square root of minus one, (i=√-1). Then of course -c2t2 
becomes (ict)2=u42. 

 
* I use the term ‘generalized’ to embrace the unified field theory and eventually the quantum 
theory, although, for our purpose, I utilize only the special and general theory. 



If we change the lettering, and denote x=u1; y=u2; z=u3 then our expression 
x2+y2+z2-c2t2 becomes u12+u22+u32+u42, a simple formula for distance in four-
dimensional geometry. It would not be profitable for us to speculate upon this 
substitution; it was introduced merely for the sake of mathematical, verbal treatment 
and can be easily translated back into the usual terms of c and t. 

We have already seen that the expression x2+y2+z2-c2t2=x'2+y'2+z'2-c2t'2 is 
invariant under the Lorentz-Einstein transformation. This fact of invariance is 
fundamental, and it is well to convince ourselves that it is so. The Lorentz-Einstein 
transformation was x'=β(x-vt), y'=y, z'=z, t'=β(t-vx/c2) where β=1/√(1-v2/c2). As the 
co-ordinates y and z are equal in both systems, we can disregard them, and verify 
that c2t'2-x'2=c2t2-x2. Let us substitute for t' and x' the values given by the Lorentz-
Einstein transformation. We have then: 
c2t'2-x'2=c2β2(t-vx/c2)2-β2(x-vt)2=c2t2β2+c2β2v2x2/c4-2c2β2tvx/c2-β2x2-
β2v2t2+2β2xvt=c2t2β2(1-v2/c2)-x2β2(1-v2/c2)=c2t2(1-v2/c2)/(1-v2/c2) 
-x2(1-v2/c2)/(1-v2/c2)=c2t2-x2; 
since β2 = 1/(1-v2/c2). Similarly it is easy to show, if we take an event-particle, as, 
for instance, a momentary spark, which has the co-ordinates x1, y1, z1, t1, in one 
system of co-ordinates, say S, and let another event-particle occur in that system at 
x2, y2, z2, t2, that the formulae remain invariant. If we designate the distance 
between the two events by r, its value would be given by r2=(x2-x1)2+(y2-y1)2+(z2-
z1)2 

In a different system, S', moving uniformly relatively to S. r'2 would in general 
not be equal to r2, but the expression r2-c2(t2-t1)2 would be equal to r'2-c2(t'2-t'1)2, 
r2-c2(t2-t1)2=r'2-c2(t'2-t'1)2 

The above expression is called the interval and expresses a most fundamental 
structural characteristic; namely, that the interval is invariant for all systems in 
uniform relative motion. This result is quite general and independent of the relative 
orientation of the axes, or of the angle the velocity has to the axes. The interval 
plays in the theory of Einstein a similar role which the pythagorean rule played in 
the [E] geometry. 

Because of the finite velocity of our measuring signals, our formulae must 
involve finite velocity. Therefore the interval is the only actual measurement which 
we can ever make in 
practice. Hence its 
fundamental 
semantic importance. 

Eddington gives a 
very fine diagram in 
explaining how intervals are measured. I reproduce it herewith (Fig. 1). 
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The expression ct, where c is the velocity of light, 300,000 kilometres per 
second, gives us the distance travelled by light in the ‘time’ t. It is natural to regard 
the velocity of light, which is a constant and translates easily into the language of 
length, as a unit of ‘time’. In the Minkowski world it is customary, because of its 
convenience, to regard 1 second as the equivalent of 300,000 kilometres and 
measure lengths or ‘times’ in seconds or kilometres indiscriminately. 

Let us imagine a scale graduated in kilometres, and clocks whose faces are also 
graduated in kilometres (1/300,000 of a second). If the clocks are set correctly and 
we look at them from A the sum of the reading of any clock and the scale division 
beside it is one for all because the scale reading gives the correction for the ‘time’ 
taken by light, travelling with unit velocity, to reach A. 

If we lay the scale in line with the two events and note the clock and scale 
readings, t1 and x1, of the first event, and the corresponding readings, t2 and x2, of 
the second event, then s2=(t2-t1)2-(x2-x1)2 where s represents the ‘interval’ 
mentioned above. 

If we set the scale moving in the direction AB then the divisions would have 
advanced to meet the second event and the difference (x2-x1) would be smaller. But 
this is compensated, because (t2-t1) also becomes altered. When A is advancing to 
meet the light coming from any of the clocks on the scale the light arrives too 
quickly, and the reading of the clock appears smaller. 

The net result is, roughly, that it does not matter what uniform motion is given to 
the scale, the final results for the interval s are always equal.3 

We can now understand the vital importance of the minus sign with the ‘time’ 
co-ordinate. In fact, if in our equations all the signs were plus, using the ‘space’ and 
‘time’ of one observer, one value of s would be obtained; but using the ‘space’ and 
‘time’ of another observer, a different value would be obtained. With the minus sign 
for the ‘time’ co-ordinate, we see that we can have values of s which are equal for 
all observers. If the distances increase, the ‘time’ element increases also, and so the 
difference may not be changed, but with the positive sign this would not be the case. 

We see that the interval s represents something which concerns only the events 
under consideration. The corresponding entity in ordinary geometry is distance, 
which is independent of the accidental choice of co-ordinates. The minus sign 
makes the geometry of space-time non-euclidean. 

To familiarize ourselves with what has been already explained about 
simultaneity and the geometry of space-time, we will work it out once more, but 
now by the Minkowski method. 

It will be enough to use two dimensions, one represented on the X axis, the other 
on the T axis. Let us consider three points A, B, C, at rest in our system O on the X 
axis (Fig. 2). In our space-time they will be represented by three parallels to the T 
axis. Let C be midway between A and B so that AC=CB. Let us assume that light 
signals are sent in both directions from C at the moment t=0. We assume that the 
system is ‘at rest’, which means that 



the light signals propagate themselves to the right and to the left with equal 
velocities. Hence we can represent them by straight lines equally inclined to the X 
axis. These lines are called ‘light-lines’. 

The points A', B' which are the intersection 
of the ‘world-lines’ of the points A and B with 
the light-lines give us the ‘times’ at which the 
signals arrive. It follows from the drawing that 
A'B' is parallel to the X axis, which means that 
A' and B' are ‘simultaneous’ (equal ‘times’). 
Let us now take another case in which our 
points A, B, C, move-uniformly with an equal 

velocity (Fig. 3). Their world-lines will also be parallel to each other but inclined to 
the axis. In the drawing the light-lines will be represented by similar lines but their 
intersections with the world-lines of A and B will not be on a parallel to the X axis, 
and so they will not be simultaneous. 

We should notice that an observer who 
moved with the system in the direction 
OX' would be perfectly entitled to claim 
that A' and B' are simultaneous to him. His 
co-ordinate system would be in which the 
points A' and B' are on a parallel to his X' 
axis as he is at rest in his system OX'T'. 
The world-lines A, B, C, are parallel to the 
T' axis because the points are supposed to 
be at rest in this system and hence the x's 

have equal values for all t's. 
An important point should be noticed; namely, that we have only one space-time 

and that the indefinitely numerous ways different observers partition their ‘space’ 
and ‘time’ represent merely the indefinitely many ways in which it can be 
partitioned. If we keep the whole of it under consideration we see that we cannot 
divide it into ‘space’ and ‘time’, as any subdivision has both aspects.4 

The Minkowski method of representation makes the change in our 
measurements of length, as given by the Lorentz-Einstein transformation, very 
obvious. 

A measuring rod is not purely a ‘spatial’ configuration, as in the actual world 
such a thing does not exist, but it is a space-time configuration. 

Every point of the rod exists at each moment of ‘time’. We see that in space-time 
we cannot represent our rod as a segment on the X axis but must represent it 
structurally as a strip in the XT plane. We assume here for simplicity that the rod is 
one-dimensional (Fig. 4). 

A rod which is at rest in a system is represented by a strip parallel to the T axis. 
If it is moving, its strip is inclined to the T axis. The ‘contraction’ does 
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not affect the strip at all but it is rather a section cut out of the X axis. In actual 
experience, it is only the strip as a manifold of world points which has physical 
reality, and not the cross sections, which, as we see, are not equal on different axes. 
The ‘contraction’ is not a change in ‘physical 
reality’ but merely a consequence of our way of 
regarding things. We see that the notorious 
argument as to whether the ‘contraction’ is ‘real’ 
or ‘apparent’ is based on a misunderstanding. Born 
gives an excellent example. If we slice a cucumber 
in different directions it is fallacious to argue that 
the smallest slice which is perpendicular to the 
axis is the ‘real’ one and the larger oblique slices 
only ‘apparent’. Similarly in the Einstein theory, a 
rod has various lengths according to the motion of 
the observer. One of these lengths, the static length, is the greatest, but it is no more 
‘real’ than any other. Similar remarks can be made about ‘time’. 

Attention should be given to one extremely important semantic point concerning 
the Minkowski four-dimensional world. We already know that for our nervous 
systems the passing from dynamic to static, and vice versa, is a most vital structural 
problem. The first step of this translation has already been given in the notion of the 
‘variable’. The calculus carried it a step further. In the Minkowski world we reach 
the complete solution of the problem. 

As Keyser points out in his Mathematical Philosophy, we had two verbal 
methods of dealing with ‘time’. One was the method of Newton, the method of the 
structural importation of ‘time’. From the objective dynamic world of the lower 
order abstractions, ‘time’ is imported into the static world of the higher order 
abstractions. We import it with ‘motion’, we say things ‘move’. Such language is 
structurally unsatisfactory, even on the earlier level of our development. It hampers 
analysis, and is contrary to the structure and function of the human nervous system. 
It breeds tremendous metaphysical impasses, and is ultimately based on semantic 
disturbances due to identification. 

If we introduce dynamic, shifting entities into static higher order abstractions, 
rationality is impossible and we drift toward mysticism. 

A very real semantic problem appears here. We want to give the best possible 
account of the structurally dynamic world around us; yet our higher order 
abstractions are structurally static, and for their proper working they must use static 
means. Here seemed to be an impasse which for milleniums had defied solution. 
‘Philosophers’ of different schools were preaching and teaching that we should 
never be able to be ‘rational’ and understand this world and ourselves. Anti-
intellectual schools began to flourish, to the bewilderment of all. 

The issue, after all, was simple, the moment some one discovered and stated it. 
We did not need to change either the world around us or ourselves; 
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we simply had to discover a structurally new method of dealing with the old 
problems without changing them. 

The new method is given by Einstein and Minkowski. Instead of making the 
static world of higher order abstractions dynamic, which cannot be done at all 
without producing semantic disturbances, they invented structural methods for 
dealing with the dynamic world by static means. The key was found in the handling 
of the troublesome factor, ‘time’. Minkowski decided to put ‘time’ in its proper 
place by introducing the structurally new four-dimensional world. 

In the case of particle P, we habitually used to say that the point P at an instant t 
was at a ‘space’ point (x, y, z). At the instant t' it was at the point (x', y', z'), . We 
always needed four numbers, which gave us the where and when in respect to some 
frame of reference. 

As we have seen, Minkowski decided to look structurally at this tetrad of four 
numbers (x, y, z, t) ‘as-a-whole’. In other words, he placed himself on a higher level 
of abstraction. He took under consideration the older results, combined them, and 
called the combination by one single name, the ‘world point’. Such a world point 
has also four numbers (not 3 plus 1, but just 4). A world made up of such points is a 
four-dimensional world in which all the points co-exist. The flux of the lower order 
abstractions and ‘time’ is abolished. There is no more ‘motion’ in a ‘flow of time’. 
In such a world the term ‘where’ has completer structural meanings, it has absorbed 
the when. If we ask, where in such a world the particle P is, we answer, at the point 
(x, y, z, t). Where is the particle P' ? At the point (x', y', z', t'). 

We see that the particles of such a world are never ‘the same’; they do not 
‘change’ or ‘pass’; they co-exist, and all is static. In this way the three-dimensional 
dynamics become four-dimensional statics. 

It should be noticed that we are now dealing with a language of new structure, 
uniquely befitting the structure and function of our nervous system. Of course we 
have altered nothing in the world around us. The example of the moving picture and 
the static film as given before is an excellent example of this structural innovation. 

The fact that in this new world nothing repeats itself because it has a different 
date, unless the time-lines are closed, has very far-reaching consequences, of which 
we have already spoken and which we will analyse in more detail later on. 

 


