
CHAPTER XXXIV 
 

ON GEOMETRY 
 

At the same time it will not be forgotten that the physical reality of geometry can 
not be put in evidence with full clarity unless there is an abstract theory also. . . . 
Thus, for example, while the term electron may have more than one physical 
meaning, it is by no means such a protean object as a point or a triangle. 
(259) OSWALD VEBLEN 
 
Euclidean space is simply a group. (417) HENRI POINCARÉ 
 

It is only in Euclidean “gravitationless” geometry that integrability obtains. (551)
 HERMANN WEYL 

The fundamental fact of Euclidean geometry is that the square of the distance 
between two points is a quadratic form of the relative co-ordinates of the two points 
(Pythagoras’ Theorem). But if we look upon this law as being strictly valid only for 
the case when these two points are infinitely near, we enter the domain of Riemann’s 
geometry. (547) HERMANN WEYL 

. . . parallel displacement of a vector must leave unchanged the distance which it 
determines. Thus, the principle of transference of distances or lengths which is the 
basis of metrical geometry, carries with it a principle of transference of direction; in 
other words, an affine relationship is inherent in metrical space. (547)HERMANN 
WEYL 
 

But before dealing with the brain, it is well to distinguish a second characteristic of 
nervous organization which renders it an organization in levels. (411)HENRI PIÉRON 

 
Section A. Introductory. 

The main metrical rule in geometry is the familiar pythagorean theorem. In 1933 
this rule is no longer considered as generally valid outside of the euclidean system, 
as its proof depends on the doubtful postulate of parallels. It is considered as an 
empirical generalization in which the relative error decreases when the distances 
become smaller. Indeed the small element of length, ds, given by the pythagorean 
rule is considered convenient and reliable in our 
exploration of the world. 
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The pythagorean rule states that in any right 
triangle, ABC, the square of the side opposite the 
right angle (the hypotenuse) is equal to the sum of 
the squares of the two other sides (the legs). In 
symbols, AB2 =AC2 +BC2. If we build squares on 
all three sides of the triangle ABC and denote the 
areas of the squares by C', A', and B' then we have 
C'=A'+B'. 

The above rule is also the main metrical rule for 
co-ordinate geometry, which gives us the length of 
the line segment joining any two points. Consider, 
for example, two points in two dimensions, P1 and P2, whose 

 



co-ordinates referred to a pair of axes in the plane are (x1, y1) and (x2, y2). By 
drawing the lines P1Q and P2Q parallel to the X and Y axes respectively, a right 
triangle P1QP2 is formed whose legs P1Q and P2Q are equal to x2-x1 and y2-y1 
respectively, whence P1P2, the hypotenuse of the right triangle, or the distance s 

between the points, is equal to P Q P Q1 2 2 2+ , or s= ( ) (x x y y2 1 2 2 1 2− + − ) . If 
we pass to indefinitely small quantities and choose to deal with differentials we have 
ds2=dx2+dy2 where dx=x2-x1 and dy=y2-y1. Usually the physicists treat their 
differentials as very small quantities and we may do likewise, although this is not 
precisely what a differential represents. 

In three dimensions similar formulae appear; namely, s2=x2+y2+z2 for the 
distance of a point from the origin and s= ( ) ( ) (x x y y z z2 1 2 2 1 2 2 1 2− + − + − )  for 
the distance between two points P1 (x1, y1, z1) and 
P2 (x2, y2, z2), and also ds2=dx2+dy2+dz2, for the 
indefinitesimally small distance between two 
points. 

In referring our geometrical entities to co-
ordinate axes, or frames of reference, as they are 
called, we are interested in the properties of our 
geometrical entities and not in the accidental 
characteristics of our frames of reference, or the 
accidental characteristics of the form of 
representation we are using. Mathematicians 
discovered long ago that the form of representation is not of indifference to the 
results they obtain. Speaking roughly they have discovered that in one form of 
representation, they obtained characteristics a, b, c, d, . . . m, n; in another form, 
characteristics a, b, c, d, . . , p, q; and in still another form, characteristics a, b, c, d, . 
. . s, t, . In cases where direct inspection was possible they find by checking up 
predicted characteristics, that such characteristics as a, b, c, d in our example 
actually belong to the subject of our analysis, whereas the characteristics m, n, . . . p, 
q, . . . s, t, . . . , do not belong to our subject at all, but vary from one form to another 
depending on the form of representation. Such facts make mathematicians 
distinguish between characteristics which are intrinsic, which actually belong to the 
subject independently of the form of representation; and those which are extrinsic, 
which do not belong to the subject, but are accidental and vary with the form of 
representation we happen to use. 

If we mix intrinsic and extrinsic characteristics we have a structurally distorted 
knowledge of our subject. Obviously we are interested in methods by which these 
two types of characteristics can be separated and distinguished. 

Such methods are found in what we call the transformation of co-ordinates, 
which means the passing from one form of representation to another, from one 
system of co-ordinates to another which corresponds to translation from one 
language to another. Obviously those characteristics which are intrinsic to our 
subject are and must be independent of the accidental selection of our form of 

 616



representation, and therefore should remain unchanged when we pass from one 
frame of reference to another. Any characteristic which is changed by such a 
transformation of our systems of reference is clearly an extrinsic characteristic 
injected by the form of representation and not belonging to our subject; and so the 
transformation of co-ordinates is precisely the test we need and use. 

Let us take for instance the line segment P1P2, as in Fig. 3. We may refer P1P2 
to a system O, or to a system O'. Obviously the length of the line P1P2 is 
independent of the axes of reference used, and the formula for the length of a line is 
not altered, although the values for the x's and y's are different in the two systems. In 
other words, the sum of the squares of the differences of the co-ordinates remains 
invariant. In symbols, 

 s= ( ) ( )x x y y2 1 2 2 1 2− + − = ( ' ' ) ( ' ' )x x y y2 1 2 2 1 2− + − . 
Such expressions, however, as x1+x2 or 
y1y2. , are not characteristics of our subject 
but characteristics of the particular frame 
of reference used, and so are mostly of no 
interest to us. 

 

In such an elementary example as given 
here we are directly acquainted with our 
entities, and so we can inspect them 
directly and check for intrinsic and 
extrinsic characteristics. But when we deal 
with geometries of more than three 
dimensions, such checking becomes 
difficult, if at all possible, and so new 
methods have to be invented. 

If we wish to eliminate the unit by which we measure our lines, this can be done 
by using a relation called a ratio. Let us, for instance, select 3 points A, B, C, and 
write the invariant formulae for the distance AB and AC in the form 

( ) (x x y y2 1 2 2 1 2− + − )  and ( ) (x x y y3 1 2 3 1 2− + − )  

then the ratio  R=
( ) (

( ) ( )

x x y y

x x y y
2 1 2 2 1 2

3 1 2 3 1 2

− + −

− + −

)
 

is independent of our unit of measurement. If, for instance, this ratio R=1, we 
conclude that AB=AC, a characteristic which belongs to our lines and which is 
independent not only of our system of reference but also of the unit which we have 
used. 

A great step forward in the formulation of methods which lead to invariant and 
intrinsic formulations was made in the invention of what is called the vector 
calculus and its extension in the modern tensor calculus. A few explanations of this 
principle will be of interest. 

A vector is roughly a directed segment of a straight line on which we distinguish 
the initial and the terminal points. A vector has thus magnitude and direction. In 
practice we deal with two kinds of entities; some are purely 
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numerical, establishing a specific, mostly asymmetrical, relation and have no 
direction, as for instance, mass, density, temperature, energy, electrical charge, 
population, mortality, . These quantities which do not involve direction are called 
scalar quantities. 

Such quantities as velocity, acceleration, electric current, stresses, flow of heat 
or fluids. , which involve not only magnitude but also a definite direction, are called 
vector quantities, and have given rise to a special calculus called the vector calculus. 

The invention of the vector calculus was a most revolutionary and beneficial 
structural and methodological step. It was originated independently by Hamilton and 
Grassmann. The benefits of this method are manifold, but we are interested mainly 
in but two of them. The first is that vector equations are simpler and fewer in 
number than co-ordinate equations. The second, and most important, is that the 
language of vectors is independent of choice of axes, and of frames of reference. It 
is naturally invariant for any transformations of axes. If axes are needed we can 
easily and simply introduce them, but we always have means to discriminate 
between intrinsic and extrinsic characteristics. The modern tensor calculus which 
made the general theory of Einstein possible is simply an extension of the vector 
calculus. 

The above methodological and structural remarks are of fundamental semantic 
importance to us in all our affairs. Human life and affairs are never free from 
linguistic issues. Their role is similar to that of mathematics, that is to say, a form of 
representation gives us not only the characteristics which are intrinsic in our 
subject, but also introduces extrinsic characteristics which do not belong to the 
subject of our analysis but are due to the particular language we use and its 
structure. The analysis of these linguistic issues is much belated and extremely 
difficult because of the structural complexity of our language. These issues were 
discovered first in mathematics because of its clear-cut structural simplicity; and it is 
important that we should be aware of such new and unexpected fundamental 
semantic problems. We will not enlarge upon this phase of the problem here, except 
to mention that the whole of the present work, which uses a different language, of a 
different structure, already shows the usefulness of the new method. Sometimes we 
discover new characteristics, and sometimes we are led to emphasize characteristics 
which are known but have not yet been sufficiently analysed. 

To carry our linguistic analogy further, we may take, for instance, the statement, 
‘knowledge is useful’. We could translate this statement into any other language and 
it would preserve its meaning. But if we make the statement, ‘knowledge is a word 
which has six consonants and three vowels’, such a statement may be false when 
translated into another language. Mathematics, being a language, has difficulties 
similar to ordinary language, but in mathematics it is often much more difficult to 
separate from other statements those which are purely about the language used. The 
so-called tensor calculus attempts to perform this last task. 
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The tensor calculus is an extension of the vector calculus, which has become 
famous since Einstein. It gives us formulations independent of any special frame of 
reference. In using it we are automatically prevented from ascribing to the events 
around us characteristics which do not belong to them. The tensor equations give us 
absolute formulations, absolute being understood as relative, no matter to what. 
Obviously the only language fit to express the ‘laws of nature’ should be 
independent of the particular point of view or language of some observer. It should 
give us formulations invariant for any and all systems of reference, although we 
might use preferred systems of reference, as, for instance, the principal axes of an 
ellipse, without any danger. The reader should not miss the point that such an ideal 
should be considered as the highest ideal in science. It is the mathematical species of 
a theory of ‘universal agreement’. The above sounds simple and innocent; but, when 
actually applied, plays havoc with most of our old ‘universal laws’. These laws do 
not survive this important and uniquely valid test, and so become mere local gossip 
instead of being the ‘universal laws’ that they claim to be. We will return to the 
structural problem of invariant formulations later. At present we must explain some 
other simple considerations. 

On any surface we need two numbers or ‘co-ordinates’ to specify the position of 
a point, and so a surface is called a two-dimensional manifold. Points in three-
dimensional manifolds require three numbers; points in four-dimensional manifolds 
four numbers; and similarly for any number of dimensions. 

For our purpose, it is enough to speak in two dimensions, as our statements can 
easily be generalized to any number of dimensions. If we want to localize a point on 
a surface it is enough to divide the surface into meshes by any two line-systems 
which cross each other. By labeling the lines of each system with consecutive 
numbers, two numbers, one from each system, will specify a particular mesh. If the 
meshes are small enough we will be able to locate any point accurately. 

These specifying labels or numbers require that we know what kind of mesh we 
are using. Distances between points are independent of mesh systems. 

For the above reasons it is important to have more data about the mesh system 
we are using, which means that we have formulae which express the distance 
between two points, which is independent of the mesh systems, in terms of the mesh 
system. 

We have already seen, in our study of the differential calculus, that, as a rule, it 
is simpler to deal with very short distances, and that it is easy to pass to larger 
distances by the process of integration. As yet we have used only plane rectangular 
systems of meshes in our illustrations, but this restriction is not necessary. If we use 
oblique co-ordinates (Fig. 4), the formula for the elemental distance is ds2=dx12-
2kdx1dx2+dx22, where k=cosine of the angle between the lines of partition. 

The polar co-ordinates (Fig. 5) of the point P are the distance r=OP, of the point 
from the origin O, and the angle, θ= ∠XOP, between the line OP 



and the axis OX. The formula for the elemental distance in polar co-ordinates is 
ds2=dr2+r2dθ2 

Fig. 6 shows the co-ordinates frequently used by geographers; namely, 
geographic longitude and latitude, where the distance ds2=dβ2+cos2βdλ2. 

 
It should be noticed that these formulae for different systems of co-ordinates are 

different. To make it still more obvious to ocular inspection, we will tabulate them 
in one lettering, thus: 
 ds2 = dx12+dx22   for rectangular systems 
 ds2 =dx12+x12dx22  for polar systems   (1) 
 ds2 =dx12-2kdx1dx2+dx22 for oblique systems 
 ds2 =dx12+cos2x1dx22 for latitude and longitude systems.1 

It must be noticed that the values for the variables are not equal in these different 
equations. It is not necessary for the reader to know in detail how these formulae are 
obtained, but it is necessary to see that they are different, that they have different 
structure. The numbers of different co-ordinate systems we can use are infinite, but 
in practice we use only a few well-known types. There are also definite and simple 
formulae for passing from one system of co-ordinates to another. 

We should not assume that in practice we always know what system of co-
ordinates we are employing. For instance, before we learned that our earth is 
‘round’, we did not know whether in our measurements we were employing the flat 
co-ordinates of a plane or spherical co-ordinates. We made some measurements and 
then we had to discover what kind of formulae would fit these measurements. 

To find out what kind of co-ordinate system we are using, we select two points, 
let us say (x1, x2) and (x1+dx,x2+dx) very close together, make our measurements of 
ds, and then test our ds to find which formula it fits. If we find for instance that our 
ds2 is always equal to dx12+dx22 we may assume for simplicity and our purpose that 
our co-ordinate system is plane and rectangular. 

If our measurements fit any of the first three formulae (1), we may assume for 
simplicity and our purpose, that we are dealing with a plane surface, as each of these 
systems belongs to the plane. But if we find that the actual measurements of ds2 are 
such that they never fit these first three formulae, but only the fourth one, we know, 
that our surface is not plane but curved 
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like a sphere. Try as we may, we shall be unable to build on a plane any co-ordinate 
system which will fit the last formula. Thus we arrive at an important conclusion; 
namely, that from measurements we have a structural hint as to the kind of world 
we are in. 
 
Section B. On the notion of the ‘Internal Theory of Surfaces’. 

Let us imagine some two-dimensional beings confined to their surface and 
unable to have a look at that surface from our third dimension. For them our third 
dimension would be ‘unthinkable’ and therefore the surface of a sphere like our 
earth which is curved in the third dimension would also be ‘unthinkable’ or ‘beyond 
them’. Should they conduct some measurements in their ‘world’ and find that these 
measurements did not fit any of the first three formulae but only the fourth, they 
would have to reconstruct radically their ‘world conception’ and conclude that their 
world was a spherical surface. Our own situation does not differ radically from the 
situation of the inhabitants of this hypothetical two-dimensional world. 

If we find ourselves so restricted as not to know whether we are finally dealing 
with a flat or spherical surface, we can select a point O and with a definite radius R 
describe from this point a circle ABC. Then we can measure the circumference of 
this circle. Now we know from geometry that in the plane the circumference of the 
circle L=2 π R where R is the radius of the circle and π=3.1415 . . . If our surface is 
flat (ABCD), our measurement of L and R 
will satisfy the relation expressed in the 
formula. But if the surface is curved, our 
R=OA will be larger than R'=AO', and we 
shall find that our π is not 3.1415 . . . , 
but smaller. We see once more that the 
metrical properties of our world throw 
some light on its structural character. 

We should notice also that the 
curvature of a two-dimensional surface is in the third dimension and that it is the 
means of giving us data about the surface without our leaving the surface and going 
into a third dimension. It is easy to convince oneself 
about these facts by taking 12 wires or strings of equal 
length and constructing the figure shown in Fig. 8. If we 
build it on a flat surface the 12 equal wires will fit 
exactly. But if we try this experiment on a curved 
surface, for instance on a pillow-, or saddle-shaped 
surface, the last closing wire will not fit, and will be too 
short or too long depending on the kind of surfaces we 
have. 
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The formulae (1) have been generalized to 
ds2=g11dx12+2g12dx1dx2+g22dx22    (2) 

for two dimensions and to 
 ds2 =g11dx12+g22dx22+g33dx32 +g44dx42+2g12dx1dx2 
+2g13dx1dx3+2g14dx1dx4+2g23dx2dx3+2g24dx2dx4 +2g34dx3dx4 (3) 
for four dimensions. It is easy to see that ds2=dx12+dx22 is obtained from (2) by 
taking g11=1; g12=0 and g22=1. This applies to formula (3) out of which we can 
have any of the other formulae by equating some of the g's to zeros, or to one or to 
other values. Formula (3) is called ‘the generalized pythagorean rule’, of which the 
ordinary form as given previously is only a particular case. We see, by comparing 
the formulae (1) with (2) and (3), that these g's are not equal for different systems of 
co-ordinates, and that they are factors in measure-determination which represent the 
geometry of the surface considered. It is customary to write the above formulae in 
an abbreviated form: thus ds2=ΣΣgmndxmdxn, where we give to m and n the values 
1, 2, 3, 4, or (m, n = 1, 2, 3, 4) and where the symbol Σ means summation. 

We will now explain briefly the above generalizations and the meaning of the g's 
given in the expressions. 

In the beginning of the nineteenth century the mathematician Gauss formulated 
the internal theory of surfaces without reference to the plenum in which they are 
embedded. This theory perhaps is and will remain a model on which all theories 
should be built. He introduced also a new kind of co-ordinates which have become 
of paramount importance, and which since Einstein are called gaussian co-ordinates. 
Gauss investigated the theory of surfaces, which are in general curved, embedded in 
three-dimensional ‘space’. In 1854 the great mathematician Riemann generalized 
the two-dimensional gaussian theory to a continuous manifold of any number of 
dimensions. Historically, both Gauss and Riemann can be considered as the 
precursors of Einstein. 

Let us imagine a surveyor to have the task of mapping a thickly wooded hilly 
region. Because of the conditions of his work, he can not use optical instruments, 
and he has no ‘straight lines’ to deal with. So euclidean geometry will, in general, 
not be applicable to the region as a whole. It can be assumed, however, that 
euclidean geometry may be applied to very small regions which can be considered 
flat. What we know already about the differential and integral calculus shows us that 
such approximations, when taken on a very small 
scale, are perfectly reliable and justifiable. 

 

The surveyor would lay out on his ground a 
network of smoothly curving lines, in two families, 
an X family and a Y family. (Fig. 9.) All the curves 
of the X family would intersect all the curves of the 
Y family but no X curve would intersect another X 
curve, nor a Y curve another Y curve. 
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Let us take the surveyor’s network and label the curves by consecutive numbers 
in each family. The essential point is that these numbers, (let us call them the X and 
Y numbers) do not represent either lengths, or angles or other measurable quantities, 
but are simply labels for the curves, much as when we label streets by numbers. 

But such numbering does not lead us far. We must introduce some measure 
relations. We have at our disposal a measuring chain and the arbitrary meshes of 
the network which we have introduced. The next step is to measure the small 
meshes one after another and plot them on our map. When this is done we have a 
complete map similar in structure to our region. Because of the smallness of the 
meshes we can consider them as small parallelograms, and such parallelograms can 
be defined by the lengths of two adjacent sides and one angle. 

We may, however, proceed differently, as shown on Fig. 10. 
Let us select one mesh, for instance the one bounded by the curves, 3 and 4 and 

by the curves 7 and 8. Let us consider a point P within the mesh, and let us denote 
its distance from the point O (x=3,y=7) by s. This distance could be directly 
measured. Let us draw from the point P parallels to 
our mesh lines and label the intersections with mesh 
lines by A and B, respectively. Let us also draw PC 
perpendicular to the x axis. 

The points A and B then also have numbers or 
labels or gaussian co-ordinates in our network. The 
co-ordinate of A may be determined by measuring 
the side of the parallelogram on which A lies and the 
distance of A from O. We can regard the relation 
called the ratio of these two lengths as the increase 
of the x co-ordinate of A towards O. We shall denote this increase itself by x, 
choosing O as the origin of the gaussian co-ordinates. Similarly, we determine the 
gaussian co-ordinate of y of B as the ratio in which B cuts the corresponding side. 
We see that these two ratios, which for brevity we call x and y, are the co-ordinates 
of our point P. 

As x and y are ratios they of course do not give us the lengths of OA and OB but 
the lengths are given, for example, by ax, and by, where a and b are definite 
numbers, to be found by further measurements. If we move the point P about, its 
gaussian co-ordinates change but the numbers a and b which give the ratio of the 
gaussian co-ordinates to the true lengths remain unchanged. 

We find the length, s, which is the distance of the point P from O. from the right 
triangle OPC by the pythagorean rule: s2=OP2=0C2+CP2. But OC=OA+AC and 
therefore by substituting and squaring we have s2=AO2+2OA•AC+AC2+CP2. From 
the right triangle APC we have AC2+CP2=AP2, whence substituting again we have 
s2=OA2+2OA•AC +AP2. But 0A=ax, AP=OB=by, and as AC is the projection of 
AP=by, it also has 
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a fixed ratio to it, whence we may put AC=cy, and so we obtain the important 
formula s2=a2x2+2acxy+b2y2, in which a, b, c are ratios given by fixed numbers. 
Usually this formula is represented differently, a2 is designated by g11, ac by g12, 
and b2 by g22; whence our formula becomes s2=g11x2+2g12xy+g22y2 in which the 
numbers 11, 12 and 22 are simply ordering labels without quantitative values, mere 
subscripts, labels, indices. , which indicate that the different g's have different 
values. We see that the above formula is the one which was given previously by (2). 

The g's with different labels serve just as sides or angles for the determination of 
the actual sizes of the parallelograms and we call them the factors of the measure 
determination. They may have different values from mesh to mesh, but if they are 
known for every mesh, then, by the last formula, the true distance of an arbitrary 
point P, within an arbitrary mesh from the origin can be calculated.2 

The procedure by which we can locate any point on the surface is simple. If our 
point P is between the two curves x=3 and x=4 we can draw nine curves between 
these two curves and label them 3,1; 3,2; . . .; 3,9. If P now lies between curves 3,1 
and 3,2 we can draw nine curves between these two curves and label them 3,11; 
3,12; . . .; 3,19, . We could do similarly with the y curves and in this way we would 
succeed in assigning to any point as accurate a pair of numerical labels as we 
pleased, and so finally have the gaussian co-ordinates of any point. We used nine 
curves simply to get the very convenient decimal method of labeling. The Cartesian 
co-ordinate systems which we use in plane geometry obviously represent only 
special cases of gaussian systems. 

As we have already seen, our g's are ratios, and so represent numbers. Such 
numbers may be regarded as tensors of zero rank for convenience of the 
mathematical treatment; and the quantities gxx, gxy, gyy, may be treated as 
components of a tensor. Since this tensor determines the measure relations in any 
particular region, it is called the metric fundamental tensor. Its value must be given 
for the region in which we want to make our calculations. It determines the full 
geometry of the surface in a given region; and, conversely, we can also determine 
the fundamental tensor in a given region from measurements made in that region, 
without any previous knowledge of how our curved surface is embedded in ‘space’ 
at the place in question. The fundamental tensor in general varies continuously from 
place to place, and so every geometric manifold may be regarded as the field of its 
metric fundamental tensor. 

Purely mathematical investigations show that the fundamental tensor defines a 
number called the ‘Riemann scalar’, which is completely independent of the co-
ordinate system and leads to the definition of the curvature tensor, which can be 
connected with the ‘matter tensor’.3 

The main importance of the introduction of such arbitrary curves is to produce 
formulae for the surfaces which remain unaltered for a change of the gaussian co-
ordinates—in other words, which remain invariant. This was achieved by the 
introduction of the relations called ratios which are pure 
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numbers, and so the geometry of surfaces becomes a theory of invariants of a very 
general type. 

On curved surfaces there are in general no straight lines—there are shortest 
lines, which are called ‘geodetic lines’. To find them, we divide any arbitrary lines 
joining two points into small elements, which we measure, and select the line for 
which the sum of these elements is less than for any other line between the two 
points.* Analytically we can calculate them, when the g's are given, by the aid of the 
generalized pythagorean theorem. The geodetic lines, and also the curvature, are 
given by invariant formulae, which represent intrinsic characteristics of the surface, 
independent of any co-ordinates. All higher invariants are obtained from these 
invariants.4 

We shall not attempt to give an explanation of the tensor calculus, as at present 
there is no elementary means of presenting a brief explanation; short of a small 
volume—at least the writer does not know of any.5 

The name ‘tensor’ originally came from the Latin word tendere=to stretch, 
whence tensio=tension. Nowadays, however, it is used in a more general way; 
namely, to express the relation of one vector to another, and not necessarily to 
imply stress or tension. As an example, we can give the representation for stresses 
occurring in elastic bodies, which originally led to the name.6 

As we have already seen, when we deal with relations of vectors our expressions 
become additionally independent of units. Such equations, independent of the 
measure code, are called tensor equations.7 

As we are interested in equations which are invariant under arbitrary 
transformations, certain functions, called tensors, are defined, with respect to any 
system of co-ordinates by a number of functions of these co-ordinates, called the 
components of the tensor, from which we can calculate them for any new-system of 
co-ordinates. If two tensors of one kind are equal in one system, they will be equal 
in any other system. If the components vanish in one system, they vanish in all 
systems. Such equations express conditions which are independent of the choice of 
co-ordinates. By the study of structural laws of the formation of tensors we acquire 
means of formulating structural laws of nature in generally invariant forms. 
Obviously, such methods and language are uniquely appropriate for physics and the 
formulations of the laws of nature. If a law cannot be formulated in some such form, 
there must be something wrong with the formulation and it needs revision. 

The tensor calculus is also peculiarly fitted to describe processes in a plenum. 
We do not use it to describe the metrical conditions but to describe the field which 
expresses the physical states in a metrical plenum. 

Eddington gives an excellent example of the fact that it is definitely necessary to 
look into the way we build up our formulae (structure) and the method of handling 
them. 

 
* More generally, the geodetic represents a track of minimum or maximum interval-length 
between two distant events, either of them being unique (one-valued) in a given case. 



The problem is to determine whether a particular kind of space-time is possible. 
We must investigate the different g's which give us different kinds of space-time, 
and not those which distinguish different kinds of mesh systems in one space-time. 
This means that our formulae must not be altered in any way if we change the mesh 
system. 

The above condition makes an extraordinarily simple test of laws that have been 
or may be suggested. Among others, Newton’s law is swept away. How this 
happens can be shown in two dimensions. 

If in one mesh system (x,y) we have ds2=g11dx2+2g12dxdy+g22dy2, and in 
another system (x',y') ds2=g'11dx'2+2g'12dx'dy'+g'22dy'2, one law must be satisfied 
if the unaccented letters are replaced by accented letters. Let us suppose that the law 
g11=g22 is assumed. We change the mesh system, for instance, by spacing the y lines 
twice as far apart, that is, we take y'=y/2 and keep x'=x. Then 
ds2=g1ldx2+2gl2dxdy+g22dy2=g11dx'2+4g12dx'dy'+ 4g22dy'2. We see that g'11=g11 
and g'22=4g22. Whence if g11 is taken equal to g22, g'11 cannot be equal to g'22. 

A few examples would convince us that it is extremely easy to change a formula 
entirely by the mere change of mesh systems. It seems unnecessary to emphasize the 
fact that ‘universal laws’, to be ‘universal’, should not depend structurally to such 
an extent on the accidental and, after all, unimportant, choice of reference systems.8 

To remedy such a state of affairs, impossible in mature science, the tensor 
calculus was invented. The whole general theory of Einstein seems to demand that 
the equations of physics should ultimately be expressed in tensor forms; in other 
words, that ‘universal laws’ should cease to be ‘local gossip’, a demand which must 
be granted, and on this point the Einstein theory is beyond criticism and is an 
epochal methodological advance of an irreversible structural linguistic character. 
 
Section C. Space-time. 

In dealing with co-ordinate systems we have heretofore used them to represent 
only ‘spatial’ entities, spreads of different 
dimensions. It is desirable to become acquainted 
with a different use of co-ordinates, in which one of 
them will represent ‘time’. The last use is just as 
simple as the former, but the graphs which we 
obtain are different. 

 

Let us take the simplest example, of a point P 
moving uniformly along a straight line OX with the 
velocity of one inch per second. We could represent 
its movement in one dimension, as in Fig. 11, and 
say that our point P is at P1 after one second (t=1), 
at P2 after two seconds (t=2) . ; at the point Pn, after 
n seconds (t=n). 
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But we could also represent this movement in a different way. We could choose 
two mutually perpendicular axes OX and OT as in Fig. 12, OX representing the 
‘spatial’ actual direction of the movement and OT, which we have heretofore used 
to represent a second ‘spatial’ co-ordinate, now representing the ‘time’ co-ordinate. 

We would lay off on the X axis our inches, 1, 2, 3, . . . n, and on the T axis our 
seconds 1, 2, 3, . . . n. In our two-dimensional space-time our point P would be at 
the point O (x=0, t=0). After one second it would be at the point P1 (x=1,t=1), after 
two seconds at the point P2 (x=2,t=2) . ; after n seconds at the point Pn (x=n,t=n). 
We see that the position of our point P in two-dimensional space-time would be 
represented by a series of points each given by two data: one ‘spatial’, the other a 
corresponding ‘time’. If the intervals are taken indefinitely small, in the limit our 
‘moving’ point would be represented by a static line inclined to the X axis. We 
could then speak either of our ‘moving’ point, or else not use the term ‘moving’ but 
speak of infinitely many static points, each given by two numbers, one representing 
a distance, the other ‘time’. Our ‘moving’ point would become a static world-line. 
The reader should notice that in this case we have structurally changed our language 
from dynamic to static, and raised the dimension. Our mathematical ‘moving’ 
‘point’, which had no dimension in our one-dimensional ‘space’, is in our two-
dimensional space-time represented by a static one-dimensional line. 

In this example we had uniform translation. We did not introduce acceleration. 
The distances were proportional to the ‘times’, hence our line was ‘straight’ and 
inclined to the X axis at a constant angle. 

Using such space-time representation 
we see that a point when it is not 
‘moving’, but is stationary, is represented 
by a line parallel to the ‘time’ axis T. as 
shown at A on Fig. 13. Our point A is 
getting older, so to speak, but does not 
‘move’. In the next case, the point B does 
not ‘move’ until it is some seconds old, 
when at B' it begins to ‘move’ with 
constant velocity. Point C ‘moves’ in the 
beginning at one constant velocity until C' where it acquires a certain different 
velocity and the direction changes. 

In Fig. 13, D represents a point experiencing a series of sudden changes of 
velocities. The graph is a succession of short straight lines forming a broken line or 
open polygon. As the changes of velocity occur more and more frequently the sides 
of our polygon become smaller and smaller; and in the limit, as the changes of 
velocity become continuous, our broken line becomes a smooth curve E. 

Motion with continuously changing velocity is called accelerated or retarded 
motion. The rate of change of velocity is called acceleration and is 
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represented by the second derivative of the distance with respect to the ‘time’; 
symbolically, A=dv/dt=d2s/dt2. 

It is important to notice that in space-time an accelerated motion is represented 
by a curved line. In uniform (constant velocity) motion the distances are 
proportional to the ‘times’, and the line is straight and its equation is of the first 
degree. In accelerated motion the distances are not proportional to the ‘times’, the 
lines are curved and the ‘time’ element dt enters in the second degree at least; 
namely, as dt2. 

For example, let us study the graph of the motion represented by the equation 
x=At2/2 which means that the distance x is proportional to the square of the ‘time’. 

Let OX (Fig. 14) be the ‘spatial’ axis, and 
OT the ‘temporal’ axis. We lay off on our T 
axis equally-spaced points, representing the 
seconds 1, 2, 3, 4. , and calculate the distances x 
for each of these values from the equation 
x=At2/2 where A represents a constant 
acceleration. 

Let us assume that the constant acceleration 
A is given as 4 metres per second per second. The equation x=4t2/2 becomes x=2t2. 
Corresponding to the values t=0, 1, 2, 3, 4. , we have the values x = 0, 2, 8, 18, 32 , . 
If we plot these points, and assume that the change is continuous, we may join the 
points by a continuous curve, which represents the motion of the point as a curved 
world-line. 

 

Similarly, in three-dimensional space-time, a point moving uniformly in the 
plane XY would be represented in the plane XY by the line AB, and in three-
dimensional space-time by the static line AB', where the ‘times’ are proportional to 
the distance. 

As we have already seen, non-rectilinear 
motion may be considered as accelerated 
motion. We will generalize the above to the 
case where any curved path is traversed with 
constant velocity. In this case the direction of 
the velocity is changed. If we take the motion 
of a point which describes a circular orbit with 
constant velocity, it is easy to find its 
accelerations which is called in this case 
centripetal. 

Let us consider a point P, moving in a circular orbit with a constant velocity v, 
as given in Fig. 16. If at a certain ‘time’ it is at A, after a short interval t, it will be at 
B. The direction of the velocity will be changed from AA' to BB'. 
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If we construct the triangle 
DCE by drawing CD parallel and 
equal to AA', and CE parallel and 
equal to BB', we see that the angle 
∠DCE is equal to the angle 
∠A'A"B' because the sides are 
parallel, and it is also equal to the 
angle ∠AOB whose sides are 
perpendicular to AA' and BB'. The 
triangles ABO and CDE are 
similar because they are isosceles 
and the angles between the equal 
sides are equal. Clearly the side 
DE=w, represents the supplementary velocity which transforms AA' into BB'. We 
know that in similar triangles the sides are proportional so we can write DE/CD = 
AB/OA. By inspection of our figures we see that DE=w; CD=v; OA=r, the radius of 
the circle. The chord AB may be taken as the arc AB of the circle, provided the 
‘time’-interval is taken sufficiently small. Let us write chord AB=s. We have w/v = 
s/r or w =sv/r. If we divide both sides of our equation by t we have w/t=sv/tr. But 
w/t=A, the acceleration, and s/t=v hence A=v2/r. In words, the centripetal 
acceleration is equal to the square of the velocity in the circle divided by the radius. 

 

The above formula is of structural importance because it is the foundation for the 
empirical proof of Newton’s law of gravitation. For our purpose it is important for 
other reasons, to be stated later. 

There are two more diagrams which should be considered, in this connection. 
Fig. 17 represents the plane circular motion of a point P whose orbit in the plane XY 
is the circle PAB. In three-dimensional space-time 
the plane circular orbit of motion would be 
represented by the static cylindrical helix (or screw-
line) with axis parallel to the ‘time’ axis T. (Fig. 
17.) We should note that the motion is dynamically 
circular in the XY plane, yet a three-dimensional 
space-time represensation gives us a stationary 
helix. 

Similarly for vibrational movements, which 
could be represented in one dimension by to-and-fro 
movements on the X axis from A to B and from B to 
A. (Fig. 18.) If we introduce our space-time form of 
representation by introducing the T axis, our vibrational world-line would be 
represented structurally by a wave-line along the T axis. In particular, if the 
vibrational motion is simply harmonic, a proper choice of the ‘time’ unit makes the 
wave-line a sine curve.9 

 

 629



Becoming thoroughly familiar with these few 
simple examples takes away a great deal of mystery 
from the Minkowski-Einstein and the new quantum 
world. We see that after all there is nothing 
extraordinary in the fact that in languages of 
different structures we get different forms of 
representations and pictures, and that in a world 
where accelerations abound we may very profitably 
use the term ‘curved’. 

When we come to speak about the Einstein 
theory, the four-dimensional space-time world of 
Minkowski, and the new quantum mechanics we 
shall have considerable use for these few notions and illustrations. 
 
Section D. The application of geometrical notions to cerebral localization. 

In the present work we are dealing in the main with structure and the adjustment 
of the structure of our languages to empirical structures, and at this point it will be 
of use to suggest some of the consequences which follow from what has been said. 

The question of cerebral localization is a difficult and vital problem. In former 
days it was supposed that the brain had individualized centres with strictly defined 
functions. Attempts were made to ascribe to definite cerebral parts definite functions 
such as ‘memory’, ‘intelligence’, ‘morality’, ‘talents’, . In the meantime, 
experimental facts disproved such structural views, and as a reaction another 
tendency appeared; namely, to deny any localization. 

Modern researches show unmistakably that both of these extreme tendencies are 
at variance with experimental structural facts. It appears that the lower centres play a 
more important role according as the terminal, or higher centres, are less developed 
and that there is considerable variability, at least in man, not only from the 
morphological and histological aspects but also from the functional aspect. It was 
found impossible to generalize from the particular development of centralization and 
functional distribution in one species to the distribution in another species. 
Localization may vary even in one individual under different circumstances.10 
Metabolism, and slight disturbances in the functioning of a neuron, were also found 
to have a most far-reaching influence, shown in its relations to other groups of 
neurons. The problems of localization are far too complex to attempt even an 
account of them, the more so since the reader will find excellent accounts of them in 
the large literature on the subject. The general conclusion reached by practically all 
investigators is that some localization of nervous function does exist, yet it has a 
certain variability which depends on an enormous number of factors. 

The methods explained in this chapter will enable us to suggest a method by 
which we can orient ourselves in the bewildering complexity of the functioning of 
the nervous system. 
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One of the main difficulties is that the structure of this world is such, that it is 
made up of absolute individuals, each with unique relationship toward environment 
(in the broadest sense); and we have to speak about it in terms of generalities. 
‘Laws’. , formulated in the old two-valued ways, can never account adequately for 
the facts at hand, being only approximations. The mathematical methods which have 
already been explained give us at once a great advantage. We have seen that if we 
have a function, y=f(x), let us say, and take the graph of this function, to every point 
of the graph there corresponds a pair of values x and y. We have seen also that each 
of the four quadrants I, II, III, IV has a 
characteristic pair of signs. In quadrant I, 
both x and y are positive; in II, x is negative 
and y positive; in III, both x and y are 
negative, and finally, in IV, x is positive 
and y negative. We can easily see that the 
value of the variables may be thought of as 
variable conditions different for each 
individual, and that definite localizations 
correspond to them. In our example we had 
to do with a function of one independent 
variable, and we had a one dimensional 
line, curved in two dimensions. When we 
had a function of two independent variables we had a surface, which in general was 
curved in a third dimension. By analogy we may pass to any number of dimensions, 
where by dimension we do not mean anything mysterious, but roughly the number 
of variables involved in the problem. 

We see that if we think of the activity of the nervous system in terms of a 
mathematical function with an enormous number of variables, we shall not only 
have place for the uniqueness of each individual, determined by the value of the 
variables and the character of the function, but that this would also imply a 
localization, which is permanent in a given individual at a given ‘time’; which again 
implies the totality of ‘circumstances’, . Our function would be N=f(x1, x2, x3, . . . 
xn). 

In fact it is hard to see how it is possible to analyse the activities of the nervous 
system in any other way. The facts are, that every organism is an individual, distinct 
and different from others, and so we must have means to take this individuality into 
account. Different values for different variables take care of this point. Similarities 
are accounted for by the general structural character of the functions. For instance, 
any quadratic equation with two unknowns gives us a conic section. An equation of 
the type y2=ax represents a parabola, the graph of any equation of the form xy=a 
represents a hyperbola , . For every definite set of values of our variables the 
implied localization is also definite, which corresponds to the fact that in a given 
individual at a given ‘time’. , the localization is definite. One value for the whole 
function can be 
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reached by giving different sets of values to the different variables. For instance, in 
the function z=5x-2y-1, if x=1 and y=1, then z=2; but we can have z=2 by taking x=2 
and y=3.5. Or if one of the conditions be non-existent, which means that the value 
of one of our variables is zero, for instance, x = 0, we still could have the value z = 2 
by taking y =-1.5. This fact accounts for the many-to-one correspondences of causal 
factors, typified, for instance, by sunshine or cod liver oil producing a similar effect. 

It should be understood that in what is said here, the numerical values do not 
matter. In most of the cases we are not advanced enough to be able to deal with such 
numerical values. What is to be emphasized is the structure of the language we use. 
The method should enable us, instead of dealing with generalizations in the old 
language, which somewhere have to be contradicted, to use a language of 
mathematical structure which shall account for the facts and leave room for the great 
individual varieties of organisms in structure and function. 

After all, we should not be surprised that the theory of functions and language of 
functions is structurally appropriate in expressing, and so in understanding, the 
functioning of the nervous system, or any other system. Personally I have benefitted 
greatly through this method; and many baffling structural complexities have been 
much simplified. 

Structurally, when we use the language of functions, variables. , we 
automatically introduce extensional structure, as already explained, and we have at 
our disposal methods of translation of different orders of abstractions— dynamic 
into static, and vice versa—which is a neurological structural necessity for being 
rational and sane. And surely science should try to be rational. It should be stressed 
again that in our problem numerical values matter very little, but structure and 
method, for the many reasons already explained, are of paramount importance. 
Perhaps even the value of numbers is due mainly to the structural fact that it has 
forced upon us extensional and relational methods. It is the only language which is 
in accordance with the structure and functioning of the nervous system, and so helps 
to co-ordinate these activities instead of disorganizing them. 

That these simple structural dependences have been discovered so late is really 
astonishing. The only explanation I can give of this is that we have been so 
engrossed in generalizing and generalizations that we lost sight of the fact that in 
life we deal structurally with absolute individuals, and that the only language which 
preserves the extensional structural individuality for its elements is found in 
mathematics—specifically, in numbers. 

It may be that a study of mathematical structure and the psycho-logics of 
mathematics will give results of unparalleled human values, particularly for our 
sanity. The problems of sanity are problems of adjustment, and no means of 
adjustment should be disregarded. It may also be that the main importance of 
mathematics will be found some day to be more in the mathematical methods and 
structure which it has originated, methods forced upon the mathematician 
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by the relational character of the entities he has to deal with, than in the possible 
combinations of these entities themselves. 

At any rate, we must sadly admit that the problems of mathematical methods and 
structure and the psycho-logical values of mathematics have so far received very 
little attention, since we have failed to realize their human importance. In the future 
this problem will be further, and thoroughly, investigated. 


