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BOOK III 
 

ADDITIONAL STRUCTURAL DATA 
ABOUT LANGUAGES AND 
THE EMPIRICAL WORLD 

 
The every-day language reeks with philosophies . . . It shatters at every touch of 

advancing knowledge. At its heart lies paradox. 
The language of mathematics, on the contrary, stands and grows in firmness. It 

gives service to men beyond all other language. (25) ARTHUR F. BENTLEY 
 

Nothing is more interesting to the true theorist than a fact which directly 
contradicts a theory generally accepted up to that time, for this is his particular work. 
(415) M. PLANCK 
 

It is not surprising that our language should be incapable of describing the 
processes occurring within the atoms, for, as has been remarked, it was invented to 
describe the experiences of daily life, and these consist only of processes involving 
exceedingly large numbers of atoms. Furthermore, it is very difficult to modify our 
language so that it will be able to describe these atomic processes, for words can 
only describe things of which we can form mental pictures, and this ability, too, is a 
result of daily experience. (215) W. HEISENBERG 
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PREFATORY REMARKS 
 

In re mathematica ars proponendi quaestionem pluris facienda est quam solvendi. 
(74) GEORG CANTOR 

We cannot describe substance; we can only give a name to it. Any attempt to do 
more than give a name leads at once to an attribution of structure. But structure can be 
described to some extent; and when reduced to ultimate terms it appears to resolve 
itself into a complex of relations . . . A law of nature resolves itself into a constant 
relation, . . . , of the two world-conditions to which the different classes of observed 
quantities forming the two sides of the equation are traceable. Such a constant relation 
independent of measure-code is only to be expressed by a tensor equation. (148)A. S. 
EDDINGTON 

We have found reason to believe that this creative action of the mind follows closely 
the mathematical process of Hamiltonian differentiation of an invariant. (148)A. S. 
EDDINGTON 
 

The only justification for our concepts and system of concepts is that they serve to 
represent the complex of our experiences; beyond this they have no legitimacy. I am 
convinced that the philosophers have had a harmful effect upon the progress of 
scientific thinking in removing certain fundamental concepts from the domain of 
empiricism, where they are under our control, to the intangible heights of the a priori. 
(152) A. EINSTEIN 

 
In writing the following semantic survey of a rather wide field of mathematics 

and physics, I was confronted with a difficult task of selecting source-books. Any 
mathematical treatise involves conscious and many unconscious notions concerning 
‘infinity’, the nature of numbers, mathematics, ‘proof’, ‘rigour’. , which underlie the 
definitions of further fundamental terms, such as ‘continuity’, ‘limits’, . It seems that 
when we discover a universally constant empirical relation, such as ‘non-identity’, 
and apply it, then all other assumptions have to be revised, from this new point of 
view, irrespective of what startling consequences may follow. 

At present, neither the laymen nor the majority of scientists realize that human 
mathematical behaviour has many aspects which should never be identified. Thus, 
(1) to be somehow aware that ‘one and one combine in some way into two’, is a 
notion which is common even among children, ‘mentally’ deficients, and most 
primitive peoples. (2) The mathematical ‘1+1=2’ already represents a very advanced 
stage (in theory, and in method. ,) of development, although in practice both of 
these s.r may lead to one result. It should be noticed that the above (1) represents an 
individual s.r, as it is not a general formulation; and (2) represents and involves a 
generalized s.r. Does that exhaust the problem of ‘1+1=2’ ? It does not seem to. 
Thus, (3), in the Principia Mathematica of Whitehead and Russell which deals with 
the meanings and foundations of mathematics, written in a special shorthand, 
abbreviating statements perhaps tenfold, it takes more than 350 large ‘shorthand’ 
pages to arrive at the notion of ‘number one’. 
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It becomes obvious that we should not identify the manipulation of mathematical 
symbols with the semantic aspects of mathematics. History and investigations show 
that both aspects are necessary and important, although of the two, the semantic 
discoveries are strictly connected with the revolutionary advances in science, and 
have invariably marked a new period of human development. In Chapter XXXIX, 
the reader will find a very impressive example of this general fact. Thus, what is 
known as the ‘Lorentz transformation’, looks like the ‘Einstein transformation’. 
When manipulated numerically both give equal numerical results, yet the meanings, 
and the semantic aspects, are different. Although Lorentz produced the ‘Lorentz 
transformation’ he did not, and could not have produced the revolutionary Einstein 
theory. 

It is well known that when it comes to the manipulation of symbols 
mathematicians agree, but when it comes to the semantic aspects or meanings. , they 
are admittedly hopelessly at variance. In a prevailingly A world we have had no 
satisfactory theory of ‘infinity’, or a A  definition of numbers and mathematics. This 
necessarily resulted in the fact that the semantic aspects of practically all important 
mathematical works by different authors often involve individual semantic 
presuppositions, or orientations concerning fundamentals. My presentation intends 
to be primarily semantic and elementary, and is only remotely concerned with the 
manipulation of symbols. A A -system, which rejects ‘identity’, differs very widely 
from A attitudes, and introduces distinct A  requirements. I had, therefore, to select 
from many works, with their individual presuppositions, those which were less in 
conflict with A  principles than the others. 

A survey of important mathematical treatises shows that although the majority of 
modern mathematicians explicitly abjure the ‘infinitesimal’, yet, in some 
presentations, this notion persists. In my presentation I reject the ‘infinitesimal’ 
explicitly and implicitly, although the formulae are not altered. ‘Modern’ calculus is 
based officially on the theory of limits, but as the theory of limits involves the 
unclarified theory of ‘infinity’. , nothing would be gained semantically and for my 
purpose, had I stressed these formal possibilities of the calculus. Quite the opposite, 
if I had done so, I would have failed to stress the most fundamental A  principle and 
task of establishing the similarity of structure between languages and the un-
speakable levels and happenings as the first and crucial consequence of the 
elimination of identity. For these weighty reasons, in my presentation, I followed 
some older textbooks, particularly Osgood’s, which, from a A  point of view, are 
sounder than the newer, largely A rationalizations and apologetics. 

However, it should be realized that practically all outstanding and creative 
mathematicians have had, and still have, A  attitudes, yet, these private beneficial 
attitudes, not being formulated in a A -system, could not become conscious, simple, 
workable, public, and educational assets. We can be simple about this point. With 
the elimination of identity, structure becomes the only possible content of 
‘knowledge’—and structure of the un-speakable levels has to be discovered. 
Discovery depends on the finding of new, and therefore different 



 

 567

characteristics. In the formulation of the last sentence, we cannot make the ‘training 
in discovery’ an educational discipline. The opposite is true in a A -system, based 
on non-identity, as we can train simply and effectively in non-identity, which 
ultimately leads to differentiation, and so discovery. 

Because of the elementary, and purely semantic character of the following 
pages, I have often restrained myself from giving technical, supposedly ‘rigorous’, 
and often A rationalizations, which we occasionally call definitions. In a semantic 
and A  treatment, at this pioneering stage, stressing old definitions would be 
seriously confusing; and I wished to avoid such witty wittgensteinian ‘definitions’ 
as ‘A point in space is a place for an argument’. In a number of instances, and for 
my purpose, I often avoided unsatisfactory formal definitions, preferring to depend 
upon the ordinary meanings of words. 

For the reader who wishes to acquaint himself with an elementary theory of 
limits and corresponding sets of definitions, I would suggest the book of the late 
Professor J. G. Leathem, Elements of the Mathematical Theory of Limits (London 
and Chicago, 1925). This theory is based on Pascal’s Calcolo Infinitesimale, Borel’s 
Théorie des fonctions, and Godefroy’s Théorie des séries. Leathem’s book has been 
printed under the supervision of Professor H. F. Baker, F.R.S., of the University of 
Cambridge, and Professor E. T. Whittaker, F.R.S., of Edinburgh. I give these names 
for professional mathematicians, to indicate the semantic trend which underlies this 
particular treatment of limits and which does not greatly conflict with a A  outlook. 
This outlook may be summarized in part, in the words of Borel somewhat as 
follows: ‘To the evolution of physics should correspond an evolution of 
mathematics, which, without abandoning the classical and well-tried theories, 
should develop however, with the results of experiments in view’. This statement 
implies vaguely the ‘similarity of structure’. , and so requires as a modus operandi 
the rejection of identity. 

There seems to be little doubt that a complete and radical revision of the 
semantic aspects of human mathematical behaviour is pending. Such a revision 
appears to be laborious and difficult, and should be undertaken from the point of 
view of the theory of the unique and specific relations, called numbers. I doubt if a 
single man could accomplish this revision. Such an undertaking will probably be the 
result of group activities, and may, in the beginning, be unified by the formulation of 
one fundamental A  principle of non-identity, the disregard of which, from science 
down to ‘mental’ ills, can be found at the bottom of practically all avoidable human 
difficulties. 

The problems are very complicated and extremely difficult, and need to be 
treated from many angles. At present, we have many scientific societies, grouped by 
their specialties; but we do not have a scientific society composed of many different 
specialists whose work could be unified by some common and general principle. 
There can be no doubt that the principle of ‘identity’, or ‘absolute sameness in all 
aspects’, is invariably false to facts. The main problem is to trace this semantic 
disturbance of improper evaluation in all fields of science and life, and this requires 
a new co-ordinating scientific body of many specialists, with branches in all 
universities. Each group would meet, say monthly, to 
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discuss their problems, and give mutual technical assistance in tracing this first 
general semantic disturbance. Such meetings would stimulate enormously scientific 
productivity. In fact, without such a co-ordinating body, the present enormous 
technical developments in each branch of science preclude the revision of general 
principles, on which, in the last analysis, all other of our activities greatly depend. 
The first task then, is to find a co-ordinating principle, and present it to the scientific 
world. 

Psychiatry, and common experience, teach us, that in heavy cases of dementia 
praecox we find the most highly developed ‘identification’. A  considerations 
suggest that any identification, no matter how slight, represents a dementia praecox 
factor in our semantic reactions. The rest is only a question of degrees of this 
maladjustment. From this point of view, we will find dementia praecox factors even 
in mathematics. In physics, only since Einstein has this factor of un-sanity been 
eliminated, and this elimination has already produced an ever-growing crop of 
‘geniuses’, which merely means, that some inhibitions of mis-evaluation have been 
eliminated from these younger men, and that they are humanly more ‘normal’ than 
the others. 

In mathematics, from a A  point of view, we must first of all not identify 
different aspects of our mathematical behaviour, nor try to cover up these 
identifications of endless aspects by the one very old term ‘mathematics’. This 
word, ‘mathematics’, in its accepted sense covers a non-existing fiction. What does 
exist, and the only thing we actually deal with, is human mathematical behaviour, 
human s.r, and the results of human mathematical behaviour and s.r. A treatise, say, 
on a new quantum mechanics, has no value to a monkey or a corpse, and only 
human mathematical behaviour and s.r, have any actual non-el existence, and is the 
only thing which actually matters. So we see that ‘mathematics’ covers a non-
existent fiction if elementalistically separated from human mathematical behaviour 
and s.r. I use the term ‘mathematics’ in the non-el sense, and attempt to signalize 
some of the difficulties non-elementalism involves at this transitory stage. 

From a A , non-identity, structural, non-el point of view, human mathematical 
behaviour must be treated uniquely as a physico-mathematical discipline, and 
postulational methods to be used exclusively as a most valuable checking method. 
To base mathematical behaviour and s.r on postulational methods exclusively, is to 
introduce dementia praecox factors into science, which only induces the spread of 
semantic maladjustment in life. 

Our main task in producing a A  revision of mathematical s.r, is in the 
elimination of identification from our s.r about ‘infinity’ and in the formulation of a 
A  definition of numbers in terms of relations. This would enable us to rebuild 
human mathematical s.r from a theory of numbers point of view, as a physico-
mathematical discipline. The intrinsic, or internal theory of surfaces, and the tensor, 
or absolute calculus, are methodologically our most secure epistemological guides. 

I would suggest that mathematical and scientific readers who are interested in a 
A  revision should, at first, in their special fields, sketch in technical papers, 
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presented before the local International Non-aristotelian Societies, A pitfalls and A  
problems and outlooks. Only after this is done, shall we be able to begin a co-
ordination of their findings, and thereby initiate a revised and unified A  science, 
mathematics, and perhaps ultimately a saner scientific civilization. 

The scientific achievements dealt with in Book III, are developing so rapidly, 
and the technical points of view alter so often, that on a static printed page it is 
impossible to do them justice. The writer has spared no efforts to keep informed of 
these scientific developments until two weeks before the appearance of this book; 
yet because these new developments do not represent new and fundamental 
semantic factors, I deliberately do not include them here. In some instances, a given 
author may seem to change his opinions, but, from a A  point of view, it sometimes 
appears that the original notions were more justified, and so I preserved them 
without change. 

The following pages are written exclusively from a semantic point of view, an 
undertaking which is far more difficult than dealing with a restricted technical 
physico-mathematical problem, because it involves second order observations, of 
the first order observations, of the first order observer, and of the relations between 
them, . When it came to a final revision of the manuscript, and reading of the proofs, 
I found that dealing with so many varied fields, languages, and symbolisms at one 
period, was no small task, and I only hope that I have not over-looked too many 
errors or misprints. 

If we must have slogans, a A  motto readily suggests itself—‘Scientists of the 
world unite’. Perhaps this motto may prove more constructive and workable than the 
familiar A elementalistic slogans which have mostly led to the dismembering of 
human society. Protests against any misrule should not be confused with the 
proclaiming of disrupting general principles. Let me repeat once more, that the most 
lowly manual worker is useful only because of his human nervous system, which 
produced all science, and which differentiates him from an animal, and not primarily 
for his hands alone; otherwise we would breed apes to do the world’s work. 

In the explanations of some geometrical notions, and some parts of the theory of 
Einstein, I have followed often very closely the Einstein’s Theory of Relativity by 
Max Born, which is easily the best elementary exposition I have read, and also the 
books of Eddington. In the quantum field I have followed mostly the books by 
Biggs, Birtwistle, Bôcher, Haas, and Sommerfeld, and I wish to acknowledge my 
indebtedness to the above authors. 

I am also under heavy obligations to Professors E. T. Bell, P. W. Bridgman, B. 
F. Dostal, R. J. Kennedy, and G. Y. Rainich, who were so kind as to read the MS. 
and/or proofs, and whose criticism and suggestions were invaluable to me. 
However, I assume entire responsibility for the following pages, especially since I 
have not always followed the suggestions made. 
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PART VIII 
 

ON THE STRUCTURE OF MATHEMATICS 
 

Being myself a remarkably stupid fellow, I have had to unteach myself the 
difficulties, and now beg to present to my fellow fools the parts that are not hard. 
Master these thoroughly, and the rest will follow. What one fool can do, another can. 
(510) SILVANUS P. THOMPSON 

 
Besides the theory of surfaces is the model on which all the higher theories are 

built and must be built, and it is well to master it completely before attempting 
generalizations. (425) G. Y. RAINICH 

 
To find such relations Einstein has applied a mathematical method of great 

power—the calculus of tensors—with extraordinary success. The calculus threshes 
out the laws of nature, separating the observer’s eccentricities from what is 
independent of him, with the superb efficiency of a modern harvester. (21)E. T. BELL 
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CHAPTER XXXII 
 

ON THE SEMANTICS OF THE DIFFERENTIAL CALCULUS 
 

The principle of gaining knowledge of the external world from the behaviour 
of its infinitesimal parts is the mainspring of the theory of knowledge in 
infinitesimal physics as in Riemann’s geometry, and, indeed, the mainspring of all 
the eminent work of Riemann, in particular, that dealing with the theory of complex 
function. (547) HERMANN WEYL 

The conception of tensors is possible owing to the circumstance that the transition 
from one co-ordinate system to another expresses itself as a linear transformation in 
the differentials. One here uses the exceedingly fruitful mathematical device of 
making a problem “linear” by reverting to infinitely small quantities. (547)HERMANN 
WEYL 

 
Section A. Introductory. 

In the first draft of this book written in 1928, the following pages preceded Part 
VII. In a final revision in 1932, it seemed advisable to transfer pages which to 
laymen look ‘mathematical’, to the end of the volume, because the majority of even 
intelligent readers have a sort of ‘inferiority complex’ about anything 
‘mathematical’. 

The patient reader knows by now, I hope, that on neurological grounds, he must 
for the sake of sanity, be able to translate the dynamic into the static, and the static 
into the dynamic; and also that he must know at least about the modern structure of 
‘space’, ‘time’, ‘matter’. These conditions seem essential for sanity, and so I had no 
choice but to give the minimum of a structural and semantic outline, and to acquaint 
the reader with the existence of modern scientific problems and vocabularies. It is 
not my aim to teach the reader mathematics or modern physics. I must limit myself 
to structural and semantic issues, for there are excellent elementary books which 
will give him the necessary informations. 

The following pages should in no way intimidate the intelligent reader. 
Elementary structural statements and definitions are given in simple language, 
followed by illustrations to render their meanings more understandable. The pages 
are less technical than they look, as each example is carried through in the most 
elementary way in all of its details, so as to make easy reading. A real difficulty for 
some readers may come from the semantic blockage created by the use of apparently 
strange, and, to them, unknown terms, or from a feeling of fright or abhorrence of 
anything mathematical, due to deplorably faulty introduction to some branch of 
mathematics at the hands of some teacher innocent of the broader epistemological 
aspects of science. I am acquainted with scientists of very considerable 
mathematical gifts, who have had to overcome this phobia of mathematics. Once the 
word ‘mathematics’ was mentioned to them, they became ‘mentally’ paralysed. An 
‘emotional’ fright seized them and it took some months to overcome this 
undesirable childish s.r. I use the subject of mathematics as an illustration of this 
difficulty, because I want to contrast the comparative simplicity of mathematical 
notions 



 

 574

with the complexity of human problems and language. For when we have 
understood the simplest notions, which happen to be mathematical, then only shall 
we be able better to understand our human problems, which are in comparison so 
difficult and so confused. 

Any reader who has a distaste for mathematics will benefit most if he overcomes 
his semantic phobia and struggles through these pages, even several times. As a 
result of so doing he will find it simple although not always easy. It is always 
semantically useful to overcome one’s phobias; it liberates one from unjustified 
fears, feelings of inferiority, . The main point of this whole discussion is to evoke 
the semantic components of a living Smith, when he habitually uses the method 
which will be explained herewith. This method is so simple and so fundamental that 
in the form given by a A -system and further simplified according to the gifts of the 
teacher, it will some day be introduced into elementary schools without 
technicalities, as a preventive semantic method against ‘insanity’, un-sanity and 
other nervous and semantic difficulties, as a foundation for a training in sanity and 
adjustment. 
 
Section B. On the Differential Calculus. 

1. GENERAL CONSIDERATIONS 
As we have already seen, the structural notion of a function is strictly connected 

with that of the variable. The variable on one level does not ‘vary’; it is a selection 
by Smith of a definite value from a given set. As these processes are going on inside 
of the skin of Smith he might experience on a different level a feeling of ‘change’. 
The method of dealing with such problems is given by the mathematical differential 
and integral calculus. 

The beginnings of methods dealing with ‘change’ are to be found even among 
the ancients. Galileo, Roberval, Napier, Barrow, and others were interested in 
‘fluxional’ methods, before Newton and Leibnitz.1 The epoch-making discoveries 
of the last two mathematicians consisted not only in perfecting the knowledge they 
had and in inventing new methods, but also—and this is perhaps the most 
important—they formulated a general theory of these structural methods and 
invented a new notation suitable for their purpose. The definite abandonment of the 
old tentative methods of integration in favour of methods in which integration is 
regarded as the inverse of differentiation was especially the work of Newton. 
Leibnitz’ main work was in the field of precise formulation of simple rules for 
differentiation in special cases and the introduction of a very useful notation. 

It is not an exaggeration to say that the calculus is one of the most inspiring, 
creative, structural methods in mathematics. There is little doubt that the analysis of 
the foundations of mathematics, and their revision, was suggested by a study of the 
methods of the calculus. It is structurally and semantically the ‘logic’ of sanity and, 
as such, can be given ultimately without technicalities by the present A -system and 
semantic training, with the aid of the Structural Differential. 



 

 575

The application of the differential calculus to geometry produced differential 
geometry. This prepared the way for the notions of Einstein and Minkowski. 

The whole of modern physics becomes possible through the calculus, and it will 
probably be correct to say that the achievements of the future also will be dependent 
on it. 

The present work is also to a large extent inspired by it, and develops simple 
non-technical methods by which the psycho-logical structural s.r necessitated by the 
calculus can be given to the masses in elementary education without any technical 
knowledge of it. This statement does not include teachers, who should be acquainted 
with at least the rudiments of the calculus.2 

It is true that in the beginning we did not suspect that the semantics of the 
calculus are indispensable in education for sanity. It is the only structural method 
which can reconcile the as yet irreconcilable higher and lower order abstractions. 
Without such a reconciliation, at our present level of development, sanity is a matter 
of good luck quite beyond our conscious or educational control. 

Let us recall the rough definition of a function: y is said to be a function of x if, 
when x is given, y is determined. In symbols we write y=f(x) which we read ‘y is 
equal to a function of x’ or ‘y is equal to f of x’. If y is a function of x, or y=f(x), then 
x is called the independent variable, being the one to which we arbitrarily assign any 
value we choose out of a given set of values. The y is called the dependent variable 
as its value depends on the value we assign to x. 

A function may have more than one independent variable; in which case we 
have a function of several variables. It happens frequently that to one value of the 
independent variable there may correspond several values of the dependent variable. 
Then y is said to be a multiple-valued function of x. 

Roughly speaking, a function is said to be continuous if a small increment in the 
variable gives rise to a small increment of the function. 

A theory of functions can be developed without any references to graphs and 
geometrical notions of co-ordinates and lengths; but in practice (and in this work), it 
is extremely useful to introduce these geometrical notions, as they help intuition. A 
modern definition of an analytic function is technical and unnecessary for our 
purpose. Suffice it to say that it is connected with derivatives and power series, 
which means structure. 

Geometry is a very remarkable science. It may be treated as pure mathematics, 
or it may be treated as physics. It may therefore be used as a link between the two or 
as a link between the higher and lower order of abstractions. This fact is of 
tremendous psycho-logical and semantic importance. It is not by pure ‘chance’ that 
the most important writers on mathematical philosophy, authors who have 
generalized their knowledge of mathematics to include human results, were mostly 
geometers. 

Indeed, Whitehead, in his Universal Algebra (p. 32), says, and justly so, that a 
treatise on universal algebra is also a treatise on certain generalized notions of 
‘space’. ‘Space’ should be understood as ‘fulness’, ‘fulness of some- 
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thing’, a plenum. Naturally coherent speech, like universal algebra, must be 
coherent speech about something. ‘Generalized space’ becomes generalized plenum, 
and so it belongs to two realms. One is contentless and formal, hence generalized 
algebra; the other, in that it refers to a generalized plenum, becomes generalized 
geometry, or generalized physics 

The main importance, perhaps, of geometry is in the fact that it can be 
interpreted both ways. One way appears as pure mathematics, and therefore as the 
study of sets of numbers representing co-ordinates. The other takes the form of an 
interpretation, in which its terms imply a connection with the empirical entities of 
our world. Obviously if speech is not the things spoken about, we must have a 
special discipline which will translate the coherent language of pure mathematics, 
which is contentless by definition, into another way of speaking which uses a 
different vocabulary capable of both interpretations. 

Again, the different orders of abstractions, which our nervous structure 
produces, are perfectly reflected in the very structure and methods of mathematics. 
The possibility of the use of the ‘intuitions’ of lower order abstractions, is extremely 
useful in pure mathematics. This fact makes geometry also unique. It allows us to 
apply to the development of geometry both orders of abstractions—the ‘intuitions’, 
‘feelings’, of the lower order of abstractions, and the static, ‘quantum’ jump 
methods of pure analysis. This is also why the einsteinian physics becomes four-
dimensional geometry; which, because it can be treated on both levels of 
abstraction, gives tremendously powerful and important psycho-logical means for 
sanity and nervous co-ordination of the individual. Since Einstein, many far-sighted 
scientists have said that although they do not know in what respect the Einstein 
theory will affect our lives, yet they feel that it will have a tremendous influence. I 
venture to suggest that the bearing of the Einstein theory and its development on the 
problems of sanity, as explained in this work, is a new and unexpected semantic 
result of the application of modern science to our lives. As the Einstein theory could 
have been formulated more than two hundred years ago when the finite velocity of 
light was discovered, so the present theory is also several hundred years overdue. 
The only consolation we have left is that it is better late than never. 

The scope of this work allows us to go but a little beyond these simple remarks, 
and permits only a very brief explanation of the most fundamental and elementary 
beginnings of the calculus. In this presentation I shall appeal very often to intuition 
(lower order abstractions), as this will help the reader. 

The notion of differentiation of a continuous function is the process for 
measuring the rate of growth; that is to say, the evaluation of the increment of the 
function as compared with the growth or increment of the variable. We may 
describe this process as follows: If y is a function of x, it is helpful not to consider x 
as having one or another special value but as flowing or growing, just as we feel 
‘time’ or follow the ripples made by a stone thrown into a pond. 

The function y varies with x, sometimes increasing, sometimes decreasing. We 
have already defined the variable as any value selected from a given range. Let us 
consider our x as given in the interval between 1 and 5. We are now 
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interested in all values which our x may take between these two values, or, as we 
say, in this interval. Obviously, we can select a few values, or, in other words, take 
big steps; as, for instance, assigning to x the successive values x1=1, x2=2, x3=3, 
x4=4, x5=5. In such a case we would have few values and the difference between two 
successive values would be rather large, for instance, x3-x2 = 1. But such large 
differences are not of much interest to us here. We may, if we choose, select smaller 
differences; in other words, assign more values to our variable in the given range. 

Let us take, for instance, for our x the series of values: 1, 1½, 2, 2½, 3, 3½, 4, 
4½, 5. Here we see that the difference between two successive values is smaller than 
1, it is ½. So we already have nine, instead of the former five, values which we may 
assign to our x. Thus we have selected smaller steps by which to proceed. Let us 
select still smaller steps; for instance, ¼. Our extensional manifold of values for x in 
the interval between 1 and 5 would then be: 1, 1¼, 1½, 1¾, 2, 2¼, 2½, 2¾, 3, 3¼, 
3½, 3¾, 4, 4¼, 4½, 4¾, 5. We see that in the interval between 1 and 5, we have 
already 17 values which we may assign to our variable, but we have followed the 
‘growth’ of our x by smaller steps; namely, by steps of ¼. If we choose to diminish 
the steps to 1/10, we would have for our extensional manifold of values: 1, 1.1, . . . , 
1.9, 2, 2.1, . . . , 2.9, 3, 3.1, . . . , 3.9, 4, 4.1, . . . , 4.9, 5: in all, 41 values for x, any 
two succeeding values differing by 1/10. If we select still smaller steps—let us say, 
1/100—we have 401 values for x and the difference between two successive values 
is still smaller; namely, 1/100. This process may be carried on until we have as 
many numbers between 1 and 5 as we choose, since we may make the difference 
between successive numbers in the sequence as small as we please. In the limit, 
between any two numbers, let us say. 1 and 2, or any two fractions, there are infinite 
numbers of other numbers or fractions. It is obvious that in a given interval, let us 
say, between 1 and 5, we can have an indefinitely large number of intermediary 
numbers arranged in an increasing progression, such that the difference between two 
successive numbers can be made smaller than any assigned value, which is itself 
greater than zero. 

The above may be made clearer by a 
geometrical illustration. Let us take a 
segment of a line of definite length, let us 
say 2 inches. Let us designate the ends by 
numbers 1 and 3. In figure (A) we divide 
the segment into 2 equal parts of one inch 
each, and see that to reach 3 starting with 1 
we have to proceed by two large jumps 
from 1 to 2, and from 2 to 3. In figure (B) we have more steps in the interval and 
therefore the steps are smaller. In figures (C) and (D) the steps are still smaller and 
their number greater. If the number of steps is very large, the steps are very small. In 
the limit, if the numbers of steps become infinite, the length of the steps tends 
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toward zero and the aggregate of such points of division represents (in the rough 
only) a continuous line. 

It is important that the reader should become thoroughly acquainted with the 
above simple considerations as they will be very useful in any line of endeavour. 
Here we already have learned how, somehow, to translate discontinuous jumps into 
‘continuous’ smooth entities. Because of the structure of our nervous system we 
‘feel’ ‘continuity’, yet we can analyse it into a smaller or larger number of definite 
jumps, according to our needs. The secret of this process lies in assigning an 
increasing number of jumps, which as they become vanishingly small, or tend to 
zero, as we say, cease to be felt as jumps and are felt as a ‘continuous’ motion, or 
change, or growth or anything of this sort. 

An excellent example is given by the motion pictures. When we look at them we 
see a very good representation of life with all its continuity of transitions between 
joy and sorrow. If we look at an arrested film we find a definite number of static 
pictures, each differing from the next by a measurable difference or jump, and the 
joy or sorrow which moved us so in the play of the actors on the moving film, 
becomes a static manifold of static pictures each differing measurably from its 
neighbour by a slightly more or less accentuated grimace. If we increase the number 
of pictures in a unit of ‘time’ by using a faster camera and then release this film at 
the ordinary speed, we get what is called slow motion pictures with which we are all 
familiar. In them we notice a much greater smoothness of movements which in life 
are jerky, as, for instance, the movements of a running horse. They appear smooth 
and non-jerky, the horse looks as if it were swimming. Indeed we do swim no less 
than fishes, except that our medium; namely, air, is less dense than water, and so our 
movements have to be more energetic to overcome gravitation. The above example 
is indeed the best analogy in existence of the working of our nervous system and of 
the difference between orders of abstractions. Let us imagine that some one wants to 
study some event as presented by the moving picture camera. What would he do ? 
He would first see the picture, in its moving, dynamic form, and later he would 
arrest the movement and devote himself to the contemplation of the static 
extensional manifold, or series, of the static pictures of the film. It should be noticed 
that the differences between the static pictures are finite, definite and measurable. 

The power of analysis which we humans possess in our higher order abstractions 
is due precisely to the fact that they are static and so we can take our ‘time’ to 
investigate, analyse, . The lower order abstractions, such as our looking at the 
moving picture, are shifting and non-permanent and thus evade any serious analysis. 
On the level of looking at the moving film, we get a general feeling of the events, 
with a very imperfect memory of what we have seen, coloured to a large extent by 
our moods and other ‘emotional’, or organic states. We are on the shifting level of 
lower order abstractions, ‘feelings’, ‘motions’, and ‘emotions’. The first lower 
centres do the best they can in a given case but the value of their results is highly 
doubtful, as they are not especially reliable. Now the higher order abstractions are 
produced by the 
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higher centres, further removed, and not in direct contact with the world around us. 
With the finite velocity of nerve currents it takes ‘time’ for impulses to reach these 
centres, as the cortical pathways offer higher neural resistances than the other 
pathways.3 So there has to be a survival mechanism in the production of nervous 
means for arresting the stream of events and producing static pictures of permanent 
character, which may allow us to investigate, verify, analyse, . It must be noticed 
that because of this higher neural resistance of higher centres and the static character 
of the higher abstractions, these abstractions are less distorted by affective moods. 
For, since the higher abstractions persist, if we care to remember them, and the 
moods vary, we can contemplate the abstractions under different moods and so 
come to some average outlook on a given problem. It is true that we seldom do this, 
but we may do it, and this is of importance to us. 

As one of the aims of the calculus is to study relative rates of change we will 
consider a series of successive values of our variable which differ by little from each 
other. If we have y=f(x) we can consider the change in x for a short interval, let us 
say, from x0 to x1, so that we assign to our x two values, x=x0 and x=x1. The 
corresponding values of our function or y will be y0=f(x0) and y1=f(x1). In general, 
small changes in y will be almost proportional to the corresponding changes in x, 
provided f(x) is ‘continuous’. 

Denoting the small increment of x by ∆x, so that x1-x0=∆x or x1=x0+∆x, function 
y receives the increment y1-y0=∆y or y1=y0+∆y. Since y1=f(x1) and x1=x0+∆x we 
have: 
  y0+∆y = f(x0+∆x); if we subtract 
from both sides  y0 = f(x0) we would have 
  ∆y = f(x0+∆x)-f(x0); dividing both sides 

by ∆x we have ∆
∆

∆
∆

y
x

f x + x f x
x

=
( (0 0) -  )   (1) 

The above ratio represents the ratio of the increment of the function to the 
increment of the variable. In the limit when the increment in the variable becomes 
vanishingly small or when ∆x tends toward zero, and our function is continuous, the 
limit of this ratio gives us the law of change or growth of our function. 

The limit which the ratio (1) approaches when ∆x approaches 0, 
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is called the derivative of y with respect to x and is denoted by Dxy, which we read 
‘Dx of y’, in symbols, 

 
∆

∆
∆x→0

lim
y
x

= Dxy (3) 

Let us illustrate this by a simple numerical example. Take the equation y=x2 and 
assume that x=100, whence y=10,000. Suppose the increment of x, namely, 
∆x=1/10. Then x+∆x=100.1 and (x +∆x)2 =100.1×100.1=10020.01. The last 1 is 
1/100 and only one millionth part of the 10,000, and so, we can 
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neglect it and consider y+∆y=10,020; whence ∆y=20 and ∆y/∆x=20/0.1= 200. In the 
general case, if y=x2 and instead of x we take a slightly larger value, x+∆x, then our 
function y also becomes slightly larger; thus, 
  y+∆y =(x+∆x)2=x2+2x∆x+(∆x)2 
If we subtract y=x2 from the last expression we have 
    ∆y=2x∆x+(∆x)2, dividing by ∆x, we have 
    ∆y/∆x = 2x+∆x. 
In the limit as ∆x approaches zero, the value of the above ratio, or the rate of change 
of our function, would be 2x, as ∆x would disappear. If our x=100, the above ratio 
would be 200, as determined above in the case of the numerical example. Another 
way of symbolizing the derivative is Dxy=dy/dx, but this requires a short 
explanation. 

In Chapter XV we have already discussed the problem of the ‘infinitesimal’ and 
we have seen that ‘infinitesimal’ is a misnomer and that there is no such thing at all. 
Yet this word is very often uncritically used by mathematicians and is therefore 
often confusing. By an ‘infinitesimal’ mathematicians mean a variable which 
approaches zero as a limit. The condition that it should be a variable is essential. It 
would probably be better to call an ‘infinitesimal’ an indefinitely small quantity or 
‘indefinitesimal’, and that is what the reader should understand when he sees 
anywhere the word ‘infinitesimal’ or ‘infinitely small quantity’. 

These indefinitely small quantities are in general neither equal, nor even of one 
order. Some by comparison are indefinitely smaller than others, and hence are said 
to be ‘of higher order’. Usually several quantities are considered which approach 
zero simultaneously. In such a case one of them is chosen as the principal 
indefinitely small quantity. Let us recall that if we take any number, for example, 1, 
and divide it by 2 we have 1/2. If we divide 1 by 4 we have 1/4 which is smaller 
than 1/2; if we divide 1 by 10 we have 1/10 which is still smaller. If we carry this 
process on indefinitely, taking larger and larger denominators, the results are 
fractions of smaller and smaller values. In the limit, as the value of the denominator 
becomes indefinitely large the value of the fraction approaches zero. This simple 
consideration will help us in the classification of indefinitely small quantities. 

Let us take a as the principal indefinitely small quantity and b another 
indefinitely small quantity. If the ratio b/a approaches zero with a we say that b is an 
indefinitely small quantity of higher order with respect to a. In other words, 
although a approaches zero in the limit yet it is infinitely larger than b and so the 
ratio b/a also approaches zero. 

If the ratio b/a approaches a limit k different from zero as a approaches zero, 
then b is said to be of the ‘same order’ as a and b/a=k+ε where ε is indefinitely 
small with respect to a. In such a case b=a(k+ε)=ka+aε, and ka is called the 
principal part of b. The term aε is obviously of a higher order than a. 

We may say in general that if we have a power of a, for instance an, such that the 
ratio b/an approaches a limit different from zero, b is called an ‘infinitesimal’ 
(indefinitesimal) of order n with respect to a. 
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Let us give a numerical illustration. We know that there are 60 minutes in one 
hour, 24 hours in a day, or that there are 1440 minutes in a day, and by multiplying 
1440 by 7, that there are 10,080 minutes in a week. Our forefathers called this 
1/10,080 part of a week a ‘minute’ because of its minuteness. It is obvious that a 
minute is very small as compared with a week. But if we subdivide a minute into 60 
equal parts we have a still smaller quantity, a quantity of second order smallness and 
so we called it a second. Indeed there are 3600 seconds in one hour, 86,400 seconds 
in a day and 604,800 seconds in a week. If we decide that for some purpose a 
minute is as short a period of ‘time’ as we need to consider, then the second, 1/60 of 
a minute, is relatively so small that it could be neglected. In a calculation where 
1/100 of some unit is the smallest value which needs to be considered, we may 
define this 1/100 as of first order 

 
smallness. Then 1/100 of 1/100, or 1/10,000, of that unit, which is relatively of 
second order smallness, is entirely negligible. The fractions whose smallness we are 
considering here are comparatively large, and we usually deal with much smaller 
quantities, but the smaller a quantity is, the more negligible the correspondingly 
smaller quantity of higher order becomes. 

Let us consider a geometrical interpretation of the above. If we represent a 
quantity x by a line segment, and a slightly greater quantity, x+dx, by a slightly 
longer line segment; then the quantities x2 and (x+dx)2=x2+2xdx+(dx)2 may be 
represented by squares where sides are the line segments which represent the 
quantities x and x+dx respectively. 

If we denote the areas by A, B, C, D, we see that A=x2 and that 
A+B+C+D=x2+2xdx+(dx)2. If we select our dx smaller and smaller the areas 
B=C=xdx diminishing in one dimension only, become also smaller and smaller, but 
D=(dx)2 is vanishing much more rapidly as it is diminishing in each of two 
dimensions, whence it is said to be a quantity of second order smallness, which for 
all purposes at hand may be neglected. 

If we take   y=f(x)  and its derivative 

   
∆

∆
∆x→0

lim
y
x

= Dxy. 

Then    
∆
∆

y
x

= Dxy + ε,  where ε is an indefinitesimal, 

and   ∆y=Dxy∆x + ε∆x. 
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In the above expression Dxy∆x represents the principal part and ε∆x appears as an 
indefinitesimal of higher order. This principal part is called the differential of y and 
is denoted by dy. If we choose f(x)=x we have dx=∆x and so, dy =Dxy dx. 

So we see that the differential of the independent variable x is equal to the 
increment of that variable. This statement is not generally true about the dependent 
variable, as ε does not generally vanish. 

The derivative is also sometimes denoted as f'(x) or y' and this notation is due to 
Lagrange; all three notations are used and it is well to be acquainted with them. 

The derivative of a function f(x) is in general another function of x, let us say 
f'(x). If f'(x) has a derivative, the new function is the derivative of the derivative-or 
the second derivative of f(x) and is denoted by y'' or f''(x). Similarly the third 
derivative y''' or f'''(x) is defined as the derivative of the second derivative and so on. 
In the other notations we have: 

   Dx(Dxy)=Dx2y or d
dx

dy
dx

d y
dx

2

2
⎛
⎝⎜

⎞
⎠⎟

=  

Having introduced these few definitions it must be emphasized that the main 
importance of the calculus is in its central idea; namely, the study of a continuous 
function by following its history by indefinitely small steps, as the function changes 
when we give indefinitely small increments to the independent variable. As was 
emphasized before, the whole psycho-logics of this process is intimately connected 
with the activities of the nervous structure and also with the structure of science. In 
this work we are not interested in calculations, complications, or analytical niceties. 
Mathematicians have taken excellent care of all that. We need only to know about 
the structure and method which help to translate dynamic into static, and vice versa; 
to translate ‘continuity’ on one level, or order of abstraction, into ‘steps’ on another. 

To illustrate what has been said and to give the reader the feel of the process, let 
us take for instance a simple equation y=2x3-x+5 where y represents the function of 
the variable x expressed by a group of symbols to the right of the sign of equality. 

To determine the relative rate of growth of this function, that is, to differentiate 
it, we replace x by a slightly larger value; namely, x+∆x, and see what happens to 
the expression. 2x3 becomes 2(x+∆x)3=2x3+6x2∆x +6x(∆x)2+2(∆x)3; -x becomes -x-
∆x and the constant 5 remains unchanged. In symbols, 
y+∆y=2x3+6x2∆x+6x(∆x)2+2(∆x)3-x-∆x+5, where ∆y represents the increment of the 
function and ∆x represents the increment of the independent variable. 

Subtracting the original expression y=2x3-x+5 we get the amount by which the 
function has been increased, namely: 

∆y = 6x2∆x+6x(∆x)2+2(∆x)3-∆x. 
To determine the relation, or ratio, of ∆y, the increment of the function, to ∆x the 
increment of the independent variable which produced ∆y, we divide ∆y by ∆x, and 
obtain the equation 
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  ∆
∆

y
x

= 6x2 +6x∆x +2(∆x)2-1. 

Then as ∆x approaches 0 the terms in the right-hand side of the equation which 

contain ∆x as a factor also approach 0 and replacing the left-hand side by dy
dx

we 

obtain the equation dy
dx

= 6x2-1 which means, that as ∆x approaches 0, the ratio of 

the increment of the function to the increment of the independent variable 
approaches 6x2-1, true for any value we may arbitrarily assign to x. 

It should be noticed that in our function the left-hand side represents the ‘whole’ 
as composed of interrelated elements which are represented by the right-hand side. 
When instead of x we selected a slightly larger value; namely, x+∆x, we performed 
upon this altered value all the operations indicated by our expression. We thus have 
in mathematics, because of the self-imposed limitations, the first and only example 
of complete analysis, impossible in physical problems as in these there are always 
characteristics left out. 

An important structural and methodological issue should also be emphasized. In 
the calculus we introduce a ‘small increment’ of the variable; we performed upon it 
certain indicated operations, and in the final results this arbitrary increment 
disappeared leaving important information as to the rate of change of our function. 
This device is structurally extremely useful and can be generalized and applied to 
language with similar results. 

It has been noticed already that the calculus can be developed without any 
reference to graphs, co-ordinates or any appeal to geometrical notions; but as 
geometry is an all-important link between pure analysis and the outside world of 
physics, we find in geometry also the psycho-logical link between the higher and 
lower orders of abstraction. But the appeal to geometrical notions helps intuition and 
so is extremely useful. For this reason we will explain briefly a system of co-
ordinates and show what geometrical significance the derivative has. 

We take in a plane two straight lines X'X and Y'Y, intersecting at O at right 
angles, so that X'OX is horizontal extending to the left and right of O and YOY', is 
vertical, extending above and below O, as a frame of reference for the locations of 
point, lines, and other geometrical figures in the plane. We call this a two-
dimensional rectangular system of co-
ordinates. This method may be extended to 
three dimensions, and our points, lines, and 
other geometrical figures referred to a three-
dimensional rectangular system of co-
ordinates consisting of three mutually 
perpendicular and intersecting planes. 

As we see in Fig. 2, we have four 
quadrants I, II, III, IV, formed by the 
intersecting axes X'X and Y'Y. The co-
ordinates of a point P, by which we 
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mean the distances from the axes determine the position of the point uniquely. We 
call X'X and Y'Y the axis of X and the axis of Y respectively, and O the origin. If we 
select a point P1 in the plane of X'X and Y'Y and draw a line P1M perpendicular to 
X'X then OM and MP1 are called the co-ordinates of P1; OM is called the abscissa 
and is denoted by x=b; and MP1 is called the ordinate and denoted by y=a. We 
speak of P1 as the point (b,a), or, in general, of any point as the point (x,y). 

Let us draw ON=OM=b and draw lines P1P4 and P2P3 through M and N 
respectively perpendicular to X'X, making MP4=NP2=NP3=MP1=a. We then have 
four points P1, P2, P3, P4, in each one of the four quadrants and all of them by 
construction would have equal numerical values for their abscissas and ordinates. 
To be able to discriminate between the four quadrants, and so avoid ambiguity, we 
make the convention that all values of y above X'X are to be positive and below X'X 
negative; and all values of x to the right of Y'Y positive, to the left negative. Thus we 
see that by such conventions the point P1 would have both b and a positive; P2 
would have b negative and a positive; P3 both b and a negative, and finally P4 
would have b positive and a negative, or in symbols P1(b,a); P2(-b,a); P3(-b,-a); 
and finally P4(b,-a). 

It is obvious that for any point on the X axis (for instance M) the ordinate y=0. If 
our point is on the Y axis the abscissa x=0 and the co-ordinates of the origin O are 
both zero (0,0). 

From the above definitions we see at once how to plot, or locate, a point. To plot 
the point (-4,3), since the abscissa x is negative and the ordinate y is positive we 
locate N on X'X, 4 units to the left of O. At N we erect a perpendicular upon which 
we locate the point (-4,3), 3 units above N. The symbol (-4,3) represents a particular 
case of the general symbol (x,y) and is accordingly plotted as a particular point as 
just shown. If instead of the pair or relations expressed by two equations x=-4, y=3, 
we have a single relation expressed by one equation, for example, y=x-2, we have y 
expressed as a function of x, whence by assigning to x different values, 
corresponding values of y are determined, and a set of points may be plotted where 
abscissas and ordinates are corresponding values of x and y respectively. Thus, 
when x=0, y=-2, when x=1, y=-1, when x=2, y=0, when x=3, y=1, when x=4, y=2, . 

We may now plot the points A(0,-2); B(1,-1); C(2,0); D(3,1); E(4,2); or as many 
more points as we may choose by giving x additional different values. 

If we give to x successive values with 
smaller differences our points would be closer 
together, for instance for 

 x=0  y=-2  (A) 
 x=0.5  y=-1.5  (A') 
 x=1  y=-1  (B) 
 x=1.5  y=-0.5  (B') 
 x=2  y=0  (C) 
 . . .  . . .  
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As we plot larger and larger numbers of points closer and closer together, in the 
limit, if we take indefinitely many such points, we approach a smooth line. It can be 
proved that an equation of the type given in this example; namely, where both 
variables are of the first order, always represents a straight line. Such equations are 
called therefore linear equations, as they represent straight lines. 

The problem of linearity and non-linearity is of extreme importance, and we will 
return to it later on. Here we are interested only in the definition and meaning of 
linearity of equations. 

Let us consider next a simple equation of second degree, y=x2/2 . In assigning 
arbitrary values to x, we note that x2 is always positive (by the rule of signs) whether 
x is positive or negative. Hence, we may tabulate values of x with the double sign 
+/- meaning either + or -. 
 x = 0  y=0  (O) 
 x = +/-1 y= ½  (A) 
 x = +/-2 y=2  (B) 
 x= +/-3 y=4½  (C) 
 x= +/-4 y=8  (D) 
 . . .  . . . 
 
We see for each value of y we have two values for x which differ only in sign. This 
means that we have points on two sides of the Y axis with numerically equal 
abscissas and, since for x=0, y =0, the beginning of our curve is at the origin of co-
ordinates and the curve is symmetrical with respect to the Y axis. 

If we connect the points D', C', B', A', O, A, B, C, D, with straight lines we have 
a broken line. But if we choose smaller and smaller differences between the 
successive values of x, the broken line 
becomes smoother and smoother, and, in 
the limit, as we take increasingly smaller 
steps, or, in other words, plot indefinitely 
larger numbers of points in one interval, 
we approach a smooth, or continuous 
curve. 

 

It must be noticed that in equations of 
higher orders the ratio of changes in the 
function y to corresponding changes in the 
variable x vary from point to point, and so 
we have a curve instead of a straight line. It 
is necessary to become quite clear on this 
point so we may better compare the two 
different types of equations as to the law of 
their growth. 
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Let us write down in two columns the successive values for the two types of 

equations. Let us take the equation y= x
2
2

 with the graph shown in the preceding 

diagram (Fig. 4) and the equation y=2x as shown in Fig. 5. 
 

 
Values of x y=2x  y=x2/2 
 -4  -8  8 
 -3  -6  4½ 
 -2  -4  2 
 -1  -2  ½ 
 0  0  0 
 +1  +2  ½ 
 +2  +4  2 
 +3  +6  4½ 
 +4  +8  8 
 +5  +10  12½ 
 +6, .  +12, .  18, . 
 

The equation y=2x involves the variables in the first degree and we see that the ratio 
of changes in the ordinates to corresponding changes in the abscissas remains 
constant (proportional). The triangles in Fig. 5, are either equal or similar, which 
necessitates the equality of angles and so the line OABCD is of necessity a straight 
line. In this case as x=0 gave us y=0 the line passes through the origin of co-
ordinates. 

The picture is entirely different in the case of the higher degree equation, y= x
2
2

, 

illustrated in Fig. 4. From the table of values of the function we see that the value of 
the function increases increasingly more rapidly than the values of the independent 
variable and so the ordinates are not proportional to the abscissas. If in Fig. 4 we 
connect O with A, O with B, O with C, O with D, respectively, we see that the lines 
OA, OB, OC, and OD have different angles with the axis X'X; the respective 
triangles are not similar, and so there is no proportionality. The lines OA, OB, OC, 
OD. , do not represent a straight line as they have all different angles with the axis 
XX' and so the points A, B, C, D. , cannot lie on a straight line but represent a broken 
line which, in the limit, when the points plotted become sufficiently near together, 
becomes a smooth and continuous curve. 

The fact that equations in which the variables are only of the first degree, 
represent straight lines, and that equations of higher degrees represent curved lines 
is very important, as will appear later on. We must notice also that the problem of 
linearity is connected with proportionality. 

These few simple notions concerning the use of co-ordinates will allow us to 
explain the geometrical meaning of the derivative and the differential. 
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Consider P1 and P2, (Fig. 6) two points on the curve, y=f(x), referred to the axes 
OX and OY. Drop perpendiculars P1M1 and P2M2 from P1 and P2 to OX. These are 
the ordinates y1=f(x1) and y2=f(x2) of the points P1 and P2, and OM1 and OM2 are 
the abscissas x1 and x2 of the points P1 and P2. Through P1 draw 
the secant P1P2, the tangent to the curve PIT, and the line P1Q 
parallel to OX. Then P1Q represents ∆x=x2-x1 the change in the 
variable x, and P2Q represents ∆y=y2-y1=f(x2)-f(x1) the change in 
the function y. 

In the right triangle P1QP2 the ratio P2Q/P1Q is a measure (the 
tangent) of the angle P2P1Q (=α) that is, 

tan α=P2Q/P1Q=∆y/∆x=
f x f x

x
( (2 ) -  )

∆
1  or, since x2=x1+∆x 

we may write  tan α= f x x f x
x

( (2 1+ ) -  )∆
∆

 

As P2 approaches P1 along the curve, the secant P1P2 rotates about P1 approaching 
P1T as its limit, and the tangent of α approaches the tangent of τ, τ being the angle 
which P1T, the tangent to the curve at P1, makes with P1Q. But as P2 approaches 
P1, ∆x=x2-x1=M1M2 approaches zero or symbolically as ∆x→0; (∆y/∆x)→tan τ, that 

is tan τ= (∆y/∆x). We see that the 
∆x → 0

lim
x x

y y
x x2 1

2 1

2 1→

−
−

lim  =
∆

∆
∆x

y
x→0

lim  represents 

nothing more or less than the derivative of the function representing the curve. In 
other words, the geometrical interpretation of the analytical process of 
differentiation is the finding of the slope of the graph of the function. The increment 
∆y of the function is represented by P2Q; the differential dy is equal to NQ and ∆x = 

dx = P1Q; tan ∠TP1Q = dy
dx

. 

From the above considerations we see that the differential calculus gives, by the 
application of some extremely simple structural principles, a method of analysis by 
which we can discover a tendency at a particular stage rather than the final outcome 
after a definite interval. From such fundamental yet simple beginnings the whole 
calculus is developed. Most of these developments are not needed for our purpose, 
but we will explain one specially important theorem. The theorem in question is that 
the derivative of the sum of two functions is equal to the sum of their derivatives. In 
symbols 
   Dx(u+v) =Dxu +Dxv. 
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Let us symbolize u+v=y and select a special value 
 y0 =u0+v0 (4) 
then   y0+∆y=u0+∆u+v0+∆v.  By subtracting (4), 
we have   ∆y =∆u+∆v.   Dividing by ∆x, 

we have   ∆
∆

y
x

= ∆
∆

u
x

+ ∆
∆

v
x

. When ∆x approaches zero the left-hand 

side approaches Dxy=Dx(u+v); and the first term of the right-hand approaches Dxu, 
while the second term approaches Dxv and so, 
   Dx(u +v)=Dxu+Dxv. 

The symbol Dx means also that certain operations are to be performed upon our 
function; namely, to find its derivative. When used in this sense it is called an 
operator. The operator Dx can be also written in its differential form as d/dx, and 
similarly for higher derivatives. 
 

2. MAXIMA AND MINIMA 
It will be useful to have some applications of the differential calculus explained. 

If a function y=f(x) is continuous in an interval a<x<b and has larger (or 
smaller) values at some intermediate points than it has at or near the ends, then it has 
a maximum (or minimum) at some point x=x0, inside this interval. If Fig. 7 
represents the graph of the function, it is obvious that at the maximum (or 
minimum) the tangent to the curve is parallel to the axis and therefore the slope of 
this tangent is zero. As this slope is given by the derivative and the slope is zero we 
have a simple method of finding the maximum (or the minimum) of a function by 
equating the first derivative to zero; namely, Dxy=0 when x=x0. 

It is useful to be able to discriminate between the maximum and the minimum of 
a function. Fig. 7 shows that this can be done by finding means to discriminate 
between the two cases when our curve is concave upwards or concave downwards. 
The slope of a curve for a particular value of x is given by the value of Dxy, 
corresponding to that value of x. If 
the value Dxy is positive, y increases 
as x increases, and the curve slopes 
up as we move to the right; if the 
value of Dxy is negative, y decreases 
as x increases, and the curve slopes 
down as we move to the right. 

If we consider the curve y=f(x) 
which has its concave side turned upward (Fig. 8), the slope of the curve itself is a 
function of x, tan α=f'(x). If we consider a variable point P on a curve y=f(x), 
together with the tangent to the curve P, as following the curve in the direction of 
increasing values of x, the curve is concave upward whenever the slope is increasing 
algebraically, 
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that is when Dx tan α=0. In other words, the curve is concave upwards for those 
values of x for which Dx tan α is positive, or since tan α =Dxy for those values of x 
for which Dx tan α = Dx(Dxy) = Dx2y is positive. 
Similarly a curve is concave downwards for those 
values of x for which Dx tan α =Dx(Dxy)=Dx2y is 
negative. These results can be expressed thus: 

A curve y=f(x) is concave upward when 
Dx2y>0, or, in words, when the second derivative 
is positive, and the curve is concave downward 
when the second derivative is negative, or, in 
symbols, when Dx2y<0. 

From Fig. 7, we see that for a maximum x we 
must have our tangent parallel to the X'X axis and 
our curve concave downwards, hence for these conditions the first derivative 
[Dxy]x=x0 = 0, and the second derivative [Dx2y]x=x0 < 0. For a minimum the first 
derivative must again be zero and the second derivative positive, whence the 
concave side of the curve is turned upwards. It should be noticed that the problems 
of maxima and minima play an extremely important structural psycho-logical and 
semantic role in our lives. All theories, somehow, are built on some minimum or 
maximum principle involving evaluations which are fundamental factors of all 
semantic reactions. In daily life we apply these structural and semantic notions 
continually. In science this tendency made its appearance quite early. The problem 
of maxima and minima was treated seriously as far back as the second century B.C. 
In the eighteenth century Maupertuis formulated a ‘supreme law of nature’, that in 
all natural processes the ‘action’ (energy multiplied by ‘time’) must be a minimum. 
Euler and Lagrange gave an exact basis and form to this principle; and finally 
Hamilton, in 1834, established this principle structurally as a variational principle, 
known as the hamiltonian principle, which appears to be of extreme generality and 
usefulness. It facilitates the derivation of the fundamental equations of mechanics, 
electrodynamics and electron theory. It has also survived, in a generalized form, the 
einsteinian revolution, for it contains nothing whatever which would connect it with 
a definite co-ordinate system; it involves only pure numbers and so is invariant to all 
transformations. It is structurally one of the most important invariants ascribed to 
nature, being independent of the systems of reference of the observers. 

It is very desirable that this problem should be investigated further from the 
structural psycho-logical semantic and neurological point of view, as the very 
foundations of human psycho-logics are fundamentally connected with such a 
principle, which itself is an invariant in human psycho-logics. 

Its importance is still increasing, and the hamiltonian principle plays a most 
remarkable role in all the newest advances of science. Any reader need only look 
attentively at his daily life to realize that there too this principle plays a predominant 
role. 
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3. CURVATURE 
In modern scientific literature we hear often the fundamental term ‘curvature’ 

mentioned, and a few words about it will not be amiss. If we take two perpendicular 
lines X'OX and OY and select on OY a number of points A, B, C, D. , further and 

further away from O and describe arcs of circles with 
these points as centres with radii AO. BO, CO, DO. , 
respectively Fig. 9, we find each successive arc flatter 
and closer to the line X'X than its predecessor. In other 
words, the larger the radius of our circle, the flatter its 
arc is. In the limit as the radius of the circle becomes 
indefinitely large, the arc approaches a straight line by 
intuition and by definition. We notice also that the 

curvature of each circle is uniform, that is, one-valued at every point; but that when 
we pass from one circle to another of different radius, the curvature changes. 

If we consider a curve and two points on it, M1 and M2, (Fig. 10) and draw two 
tangents at these points; then the angle between these two tangents will depend on 
two factors, the sharpness of the curve and the distance between the points M1 and 
M2. If we take the points near enough and 
designate the length of the arc between 
them by ∆s, the angle between the two 
tangents by ∆θ, then the limiting value of 
the ratio ∆θ/∆s, as M2 approaches M1, 
becomes dθ/ds, and is a measure of the rate 
of change of the direction of the tangent at 
M, as M moves along the curve. Let us 
designate the rate at which the tangent 
turns where the point describes the curve with unit velocity as the curvature, or 
k=±dθ/ds, but as k is essentially a positive number or zero we accept only the 
absolute value of this ratio. To find dθ/ds we notice that tan θ=dy/dx 

 

or θ = tan-1 dy
dx

= tan-1y', whence dθ =
dy'
y'

y' ' dx
y'1 12 2+ +

= . 

But k = d
ds
θ  where ds = ( ) ( )dx dy y' dx2 2 21+ = +  

whence k = y' '

y'( )1 2 3
2+

. 

The reciprocal of the curvature is called the radius of curvature. The radius of 
curvature of a circle is its radius. The curvature of a curve is measured by the radius 
of the osculating circle, that circle which fits the curve the most closely in the 
neighbourhood of our point. 
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4. VELOCITY 
Until now we have treated our independent variables as any quantity: but there are 
many problems where the independent variable represents ‘time’. For instance, if we 
travel by railroad the distance increases as ‘time’ increases, plants and animals grow 
with ‘time’, . By the average velocity with which a given point moves for a given 
length of ‘time’ we mean the distance s traversed divided by the ‘time’ elapsed. If, 
for instance, a train makes 5 miles in 10 minutes we say that its average velocity is 

30 miles per hour, or, in symbols: Velocity, v= s
t

. In this case we were considering 

uniform velocity, but very often we have to deal with velocities which are not 
uniform and which might be increasing or decreasing. In such a case we can 
describe the velocity approximately at any given moment if we take a short interval 
of ‘time’ immediately after the moment in question and take the average velocity for 
this short interval. 

For instance, the distance a stone falls is according to the law, s = 16 t2. We 
want to find how fast it is going after t1 seconds when s1 = 16 t12, and a short 
interval after we have, let us say, s2 = 16 t22. Obviously the average velocity for the 

interval t2-t1 is s s
t t
2 1

2 1

−
−

 feet per second. If we take t1=1, s1=16, and the difference 

t2-t1=0.1 of a second then s2=16t22=16×1.21=19.36 and 
s s
t t
2 1

2 1

−
−

= 19 36 16
01

.
.
− = 336

01
.
.

=33.6 ft. per second. 

If we take the interval of ‘time’ smaller, for instance, 1/100 of a second we 

would have s s
t t
2 1

2 1

−
−

= 32.2 feet per second, and if we take the intervals as 1/1000 of 

a second the average velocity would be 32.0 feet per second. We see that we could 
determine the speed of the stone at any instant with any degree of accuracy by direct 
calculation, but this is not necessary. If we regard the interval t2-t1 as an increment 
of the variable t, that is as ∆t, and s2—s1=∆s which represents the increment of the 
distance considered as a function of the ‘time’ we would have the average velocity 
=∆s/∆t. As ∆t approaches zero in the limit, the average velocity approaches a limit 
and this limit is the velocity v at the instant t1, or in symbols 

   v=
∆

∆
∆t

s
t

ds
dt→

=
0

lim . In words, the velocity of a point is the ‘time’ 

derivative of the space traveled. 
If the velocity is not uniform, the rate at which the velocity is increasing is called 

the acceleration and may be written as a=dv/dt , but as we have already seen dv is 

itself d ds
dt

⎛
⎝⎜

⎞
⎠⎟

, hence a= d s
dt

2

2
. In words, the acceleration is the second derivative of 

the distance with respect to ‘time’. 
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In the above notes we have not attempted to give the reader more than some 
structural and methodological notions, and what amount really to short structural 
explanations of definitions which will be useful later on. The reader can find many 
excellent books which give all the additional information he may want. 
 
Section C. On the integral calculus. 

So far, we have been studying a method by which to find the variation of a given 
function corresponding to an indefinitely small variation of our variable. We saw 
that the rate of change of our function was given by the first derivative, which in 
turn was also a function (usually different) of our independent variable and so could 
itself vary and have a rate of change, and so give us a second derivative, . 

And now we must explain briefly the inverse problem; namely, given the 
derivative to find the function. In symbols, given u=DxU, find U. 

The function U is called the integral of u with respect to x, or, in symbols, U = ∫ 
udx. 

To integrate a function f(x) is to find a function F(x) which when differentiated 
gives again the function f(x) with which we started. As in this work we are not 
interested in computations, but only in the structural, methodological, and semantic 
aspects, the inverse problem of differentiation; namely, integration, is less important 
for us here, and I will explain only a single example. We have already differentiated 
the function y=2x3-x+5 and found its derivative dy/dx=6x2-1. Just as the derivative 
of the sum of a number of functions is equal to the sum of their derivatives, a similar 
rule holds for the integrals; namely, that the integral of the sum of a number of 
functions is equal to the sum of their integrals. Hence we can take in our example 
only the first term of our equation. In symbols Dx(2x3)=6x2; in words, the derivative 
of 2x3 is 6x2. 

In a problem in integration we would have 6x2 given and we would have to find 
the original function from which 6x2 was obtained by differentiation. In our case the 
solution is already given; namely, ∫ 6x2dx = 2x3.* In general the solution of problems 
of integration is largely dependent on the 
ingenuity of the solver, although we have a 
number of standard formulae and methods. The 
geometrical meaning of integration is much more 
interesting for us and we will give a short 
explanation of it. 

 

If we consider the curve given by an equation 
y=f(x) and the area bounded by the X axis, the 
two ordinates whose abscissas are x=a and x=b 
and the curve, we may find the area as follows: 

 
* The constant of integration is omitted so as not to confuse the reader. 
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If we select an arbitrary value x=x1 for which y=y1=f(x1), denoting the 
corresponding value of the area A by A1 (Fig. 11) and give to x1 an increment ∆x, 
then the area A1 would receive the increment ∆A. We can approximate ∆A by the 
help of two rectangles, one of height y1=f(x1), the other of height y2=y1+∆y 
=f(x2)=f(x1+∆x). 

We see that ∆A is larger than the smaller rectangle. In symbols 
  y1∆x <∆A < (y1 +∆y)∆x, 

hence    y1 < ∆
∆

A
x

< (y1 +∆y). 

As we pass to the limit and let ∆x approach zero, we have 

∆

∆
∆x

A
x→0

lim =y1. That is, DxA=y1=f(x1) when x=x1; which means that the ordinate of 

the curve at any point is equal to the x derivative of the area at that point. In general, 
DxA =y, and hence, A =∫ ydx. 

The consideration of what is called the definite integral is still more instructive. 
Let us take the curve in Fig. 12 represented by an equation y=f(x) and a pair of 
ordinates which intersect the X axis at the points x=x0 and x=xn.Let us divide the 
interval x0xn into n equal parts and erect 
ordinates at each point of division. Let us 
construct a set of pairs of rectangles with 
these ordinates as we constructed the single 
pair of rectangles in Fig. 11. By inspection 
of the figure we see that the area under the 
curve is slightly greater than the sum of the 
areas of the included rectangles and 
slightly less than the sum of the areas of the including rectangles. When n is allowed 
to increase without limit the sum of the areas of either set of these rectangles 
approaches the area bounded by the curve, the X axis, and the end ordinates. In 
symbols, the area of the first rectangle 

beneath the curve is f(x0)∆x, where ∆x denotes x1-x0 =
xn x

n
− 0 . The area of the 

second rectangle is f(x1)∆x, . The sum of these areas is f(x0)∆x+f(x1)∆x+ . . .+f(xn-

1)∆x = . f x x
i

n
( )∆

=0

-1

∑
If we allow n to increase without limit we have the area under the curve: 

 A= [f(x0)∆x+f(x1)∆x+ . . . +f(xn-1)∆x]= Σ f(x)∆x 
n→∞
lim

∆x→∞
lim

   =  = F(xn) - F(x0) [ ]f x dx F x
x x

x xn

x x

x xn
( ) ( )

=

=

=

=

∫ =

0 0
In words, the above formula indicates the fundamental process of the integral 
calculus; namely: Let f(x) be a continuous function of x throughout the interval x0 ≤ 
x ≤ xn. If we divide this interval into n equal parts by the points x=x0, x1, . . . , xn, 
and form the sum f(x0)∆x +f(x1)∆x +. . .+f(xn-1)∆x, 
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as we let n increase without limit, this sum will approach a limit, which can be 
found by integrating the function f(x), that is, by finding the function F(x) of which 
f(x) is the derivative, and by taking the integral between the limits x=x0 and x=xn; 
that is, by taking the difference between F(xn) and F(x0). 

It must be noticed that in our first example, the case of the indefinite integral, we 
considered integration as the inverse of differentiation; in the second example, we 
considered the definite integral as the limit of a sum. 

The symbol of the integral, ∫ , had its origin in the letter S from the latin word 
‘summa’, the integral being historically understood as the definite integral, or the 
limit of a sum. 
 
Section D. Further applications. 

1. PARTIAL DIFFERENTIATION 
When we have more than one independent variable, for example, two, we have 

to become acquainted with what is called partial differentiation. This process is 
important, as in practice we usually deal with several independent variables. It 
presents very little that is new from a structural and methodological point of view, 
but we give it here, simply to explain the meaning of the term, as the reader may 
find it used in other works. 

If we have a function z of two independent variables x and y, z=f(x,y) which 
geometrically represents a surface, we may differentiate with respect to one of the 
variables, let us say x, and hold the other variable y fast, that is, treat it as a constant. 
In this way we should then have a partial derivative of z with respect to x. Similarly, 
if we treat x as a constant and differentiate in respect to y, we should have the partial 
derivative of z with respect to y. The above definitions give us the rules for partial 
differentiation—that is, following the ordinary rules, considering each variable 
individually and treating all the other variables as constant. 

The notation for partial derivatives is similar to the ones explained before, 
except that the lower case letter d is replaced by the script form ∂ or a subscript is 
used to indicate the variable with respect to which the differentiation is performed; 

for instance, ∂
∂

∂
∂

f
x

z
x

= =∂z/∂x=f'x=z'x=Dxf=Dxz, . Higher derivatives are obtained 

without difficulty in like manner. If z=f(x,y) and ∂
∂

z
x

=fx'(x,y) and 
∂
∂

z
y

=fy'(x,y) the 

partial derivatives themselves are in general also functions of x and y and can in turn 

be differentiated. Thus, 
∂
∂

∂
∂

∂
∂x

z
x

z
x

⎛
⎝⎜

⎞
⎠⎟

=
2

2
= fxx''(x,y), or 

∂
∂

∂
∂

∂
∂ ∂y

z
x

z
x y

⎛
⎝⎜

⎞
⎠⎟

=
2

= fxy''(x,y). 

The order in which we differentiate is immaterial provided that the derivatives 
concerned are continuous. The total differential of a function of two variables, for 

example, f(x,y), df = dxf + dyf =
∂
∂
f
x

dx +
∂
∂
f
y

dy is 
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equal to the sum of the partial differentials of the first order if we neglect terms of 
higher orders, whose values are indefinitely small quantities relative to the first 

order differentials. In symbols, df = dxf + dyf =
∂
∂
f
x

⎛
⎝⎜

⎞
⎠⎟

dx +
∂
∂
f
y

⎛
⎝
⎜

⎞
⎠
⎟ dy . In words, the 

total differential of f(x,y) is found by finding the partial derivatives with respect to x 
and y, multiplying them respectively by dx and dy, and adding. 
 

2. DIFFERENTIAL EQUATIONS 
A natural development of the invention of the calculus was the introduction of 

differential equations. Differential equations differ from the ordinary equations of 
mathematics in that in addition to variables and constants they contain also 
derivatives of one or more of the variables involved. Differential equations are of 
extreme importance, and arise in many problems. Newton solved his first 
differential equation in 1676 by the use of an infinite series, eleven years after his 
discovery of the calculus in 1665. Leibnitz solved his first differential equation in 
1693, the year in which Newton first published his results. From this date on, 
progress in the development and application of differential equations was very 
rapid, and today the subject of differential equations occupies in the general field of 
mathematics a central position from which important and useful lines of 
development flow in many different directions. 

To integrate or solve a differential equation means, analytically, to find all the 
functions which satisfy the equation. In geometry, it means to find all the curves 
which have the property expressed by the equation. In mechanics it means to find all 
the motions that may possibly result from a given set of forces, . The degree of the 
differential equation is defined as the degree of the derivative of the highest order 
which enters the equation. The order of the differential equations is the order of the 
highest derivative it contains. 

Equations in x and y, of the first degree in y and its derivatives with respect to x, 
y', y''. , are called linear equations. The main equations of physics are linear 
differential equations of the second order, since y, the primitive function, y', the first 
derivative, and y'', the second derivative, appear only in the first degree. For 

instance the equation d y
dx

2

2
+ a1

dy
dx

+ a2y = X, or y''+a1y'+a2y = X, when X 

represents a function of x alone is such an equation. It is linear, or of the first degree, 
because the second derivative, y'', appears only to the first degree. It is of the second 
order because that is the highest order derivative in the equation. As we may recall, 
the derivative of a function gives us the rate of change of the function when we give 
successive values to the independent variable. When we study the rate of change of 
the rate of change of our function, we study the rate of change of the first derivative 
which expresses the rate of change of the function, whence we obtain the derivative 
of the second order, and so on. If we equate our derivatives to zero, or choose a 
value of the variable for which our derivative becomes zero, the rate of change of 
our function 
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becomes zero. In other words, the value of our function is momentarily constant, it 
has a stationary value. 

Quite naturally, differential equations which involve derivatives involve 
implicitly and explicitly the whole fundamental structural framework of the calculus 
as explained in this chapter by expressing the ‘rate of change’ of some natural 
process. If the rate of change is zero, it might express some ‘natural law’, or some 
uniformity as found in nature. In other words, differential equations express 
differential laws, which in turn express the momentary tendencies of processes 
whose outcomes are given by the process of integration. 

From what has already been said here, it is obvious that differential equations 
and the differential laws which they express are of extreme structural importance. 
They formulate not only the uniformities and tendencies found in nature, but also of 
necessity somehow involve causality. Besides which, they are also in accord with 
the physical structure and function of the nervous system. We shall return to this 
most important subject in the next chapter, in which we shall analyse the physical 
significance and aspects of what has been explained here. 
 

3. METHODS OF APPROXIMATION 
 

In discussing the above fundamental notions of the calculus we considered a 
portion AB, of the curve given by the equation y=f(x), (Fig. 13) and two points on 
this curve P1 with co-ordinates (x1, y1) and P2 with co-ordinates (x2, y2) moving 
along the curve, the secant, or chord, P1P2 
rotates about P1, its length steadily 
diminishing, and in the limit as the length of 
the chord P1P2 tends toward zero, the slope of 
the secant approaches the slope of the tangent 
PIT. We saw that the slope of this tangent was 
given by the value of the first derivative of the 
function which represented the curve. We 
were trying to get some knowledge of the 
direction of our curve at a given point by 
considering the slope of a straight line of smaller and smaller length. When we 
studied the curvature of our curve we considered the rate of change of the slope of 
our tangent and so, by the aid of a second derivative, we found the curvature. In this 
case we approximated our curve to a circle of radius equal to the radius of curvature 
of the curve at a given point. 

In attempting to determine the length of a portion of our curve a point cannot be 
regarded as a piece of the curve but only as marking a position on it. For the purpose 
of determining the length of an arc it is convenient to replace each small element of 
the arc by its chord, a lineal element. By definition the length of an arc of a curve is 
the limit, if such limit exists, toward which the 
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sum of the lengths of the chords of its small subdivisions tends as the number of 
chords increases indefinitely and their individual lengths all approach zero 
uniformly. For example, the circumference of a circle is the limit approached by the 
perimeter of an inscribed polygon as the number of its sides increases indefinitely, 
the lengths of the individual sides all approaching zero. 

Similarly the length of a curve may be approximated by the sum of the lengths 
of segments of tangents at successive arbitrarily chosen points, merely by choosing 
the points nearer and nearer together. For example, the circumference of a circle is 
the limit approached by the perimeter of a circumscribed polygon as the number of 
its sides increases indefinitely, the lengths of the individual sides all approaching 
zero. In either case, a point on a curve taken with a vanishingly small portion of the 
tangent to the curve at that point may be called the lineal element of the curve. 

The above definitions apply equally well in either two or three dimensions. The 
lineal element in two dimensions may be defined by three co-ordinates x, y, p, of 
which x and y are the co-ordinates of the point through which the lineal element 
passes and p is the slope of the element. This slope, as we already know, is to be 
found by differentiation, and is given by the formula p=dy/dx. In geometrical 
problems which relate the slope of a tangent to that of other lines, it is not the 
tangent that is of real importance but the lineal element. From this point of view a 
curve is made up of infinite numbers of vanishingly small lineal elements which are 
tangent to it, which is the point of view of the differential calculus. Or the curve is 
composed of infinite numbers of vanishingly small chords which are the sides of an 
inscribed polygon, which is the point of view of the integral calculus. 

Obviously, in the limit, both points of view are equivalent, although as a matter 
of convenience they may be different. In any case, it must be obvious to the reader 
that using straight lines instead of pieces of a curve, or using as closer 
approximations arcs of circles, facilitates our study of the curves, indeed renders 
such study possible at all, and in practice we can carry our work to any degree of 
approximation we choose. But in theoretical work we require precision, hence we 
think in terms of infinite numbers of vanishingly small steps. The differential and 
integral calculus supply the only perfect technique for these processes of analysis 
and synthesis. 
 

4. PERIODIC FUNCTIONS AND WAVES 
We have already said that the most important relations of physics are represented 

by linear differential equations of the second order. It is important to know the 
connection of these equations with the general theory of waves or oscillations. 

If on a circle of unit radius, as shown in Fig. 14, we take several points P1, P2, 
P3, P4, and connect these points by straight lines with the centre O, we get angles 
XOP1, XOP2, . In trigonometry we define certain functions of these angles and a 
unit of measurement. For our purpose we will only define the so-called sine and 
cosine, as we have already met the definition of tangent 
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tan θ = M P
OM

1 1

1
. The angles XOP1, XOP2. , may be specified by the ratios M1P1/OP1, 

M2P2/OP2. , respectively each of which ratios has a definite value. This ratio in any 
case is called the sine of the angle, and is written in abbreviated form sin θ. If the 
radius of our circle is taken as unity then simply M1P1 = sin ∠P1OM1 = sin θ, since 
OP1=1. The ratio OM1/OP1 is called the cosine of the angle XOP1, and is written 
cos θ. 

 
 
 
 

There are two units of measurement of angles. In ordinary, or sexagesimal, 
measure, the unit angle is the degree, 1/360 of the entire angle about a point, 1/180 
of a straight angle, or 1/90 of a right angle. The degree is divided into 60 equal parts 
called minutes. The minute is divided into 60 parts called seconds. In circular 
measure the unit angle is the radian, the angle at the centre of a circle whose arc is 
equal to the radius of the circle. This angle is a constant whether the circle be large 
or small, due to the fact that the circumferences of circles vary as their radii, and, in 
one circle, angles at the centre are proportional to their arcs. The constant ratio of 
the circumference of the circle to its radius is given by the number π=3.14159 . . . , 
this number being ‘incommensurable’ with unity. As the length of the circumference 
of a circle with radius R, is 2πR we see that the entire angle about the centre, which 
in degrees is 360, is in radians 2π; that a straight angle equals 180 degrees or π 
radians; and that a right angle equals 90 degrees or π/2 radians. 

Thus 1 radian = 180°
π

= 57°17'44''.806. . . which, as it depends on the value of π, is 

itself an ‘irrational’ number. The ‘incommensurability’ of the radian with right and 
straight angles makes its practical use inconvenient. One of the main uses of the 
radian is in theory as it introduces a marked simplification in that the ratio of the 
sine of an indefinitely small angle to the angle itself is 1, when the angle is 
measured in radians. In other words; the equivalence of an indefinitely small arc and 
chord becomes apparent numerically when the angle and sine are expressed in one 
unit. 
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The following table gives the ordinary and radian measures, the sine, cosine and 
tangent of angles of 0, 1, 2, 3, and 4 right angles. 

 
Angle in 

Right Angles 
Angle in 
Degrees 

Angle in 
Radians 

Sine Cosine Tangent 

0 0 0 0 1 0 
1 90 π/2 1 0 ±∞ 
2 180 π 0 -1 0 
3 270 3π/2 -1 0 ±∞ 
4 360 2π 0 1 0 

 
From Fig. 14 and from this table, it follows that the values of the trigonometric 

functions are equal for the angles 0 and 2π, or in the language of degrees, for the 
angles 0° and 360°. We see also from Fig. 14 that the angle XOP1, or any other 
angle, has one measure as expressed by its trigonometric functions if we add to it 
360° or 2π radians. 

The structural importance of the trigonometric functions in analysis lies in the 
fact that they are the simplest singly periodic functions and are therefore adapted for 
the representation of undulations. As we have already seen the sine and cosine have 
the single real period 2π, which means that they are not altered in value by the 
addition of 2π to the variable. The tangent has the period π. 

Besides the three functions defined above, we usually define three others, the 
secant, the cosecant and the cotangent as reciprocals respectively of the cosine, the 
sine, and the tangent. These last three we may disregard in our present discussion. 

Let us consider the function y=sin x, and construct the curve which this equation 
represents. If we draw a circle of unit radius, Fig. 14, the ordinates corresponding to 
the different angles XOP1, XOP2. , give the values of y, while the angles measured 
in radians, give the corresponding values of the abscissa x. 

Plotting corresponding values of x and y as thus obtained in Fig. 14 we get in 
Fig. 15 the partial graph of the function y = sin x. Proceeding again around our 
circle in Fig. 14, that is, adding 360° or 2π, to each of our angles, hence to their 
abscissas of the curve in Fig. 15, we add to the graph a second complete wave. We 
may thus proceed either forward or backward obtaining as many complete waves, or 
undulations, as we please, as in Fig. 16. 

The curve represented by y = cos x is obtained in like manner and is quite similar 
to the sine curve. (See Fig. 17.) 

To differentiate sin x we give to x the arbitrary values x1, and x1+∆x and 
compute for y the corresponding values y1=sin x1 and y1+∆y=sin (x1+∆x). 
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Subtracting y1 from y1+∆y, we have ∆y=sin (x1+∆x)-sin x1. Dividing by ∆x we 

have  ∆y/∆x = sin( ) sin( )x x x
x

1 1+ −∆
∆

. 

To express the meaning of the above geometrically we may take a circle of unit 
radius and construct the angles x1 and (x1+∆x), (Fig. 18). Then M1P1=sin x1, 
M2P2=sin (x1+∆x), QP2=sin (x1+∆x)-sin x1=∆y, and arc P1P2= ∠P1P2=∆x. 

The limit approached by the ratio ∆y/∆x=QP2/P1P2 as P2OP1, or as ∆x→0, is by 
previous definitions the sine of the angle M2P2P1, since in the limit the arc P1P2 
becomes a straight line, the hypotenuse of the right triangle P1QP2, which is similar 
to the right triangle P1M1O, whence angle ∠M2P2P1 = ∠x1. In other words, 

∆ ∆

∆
∆x x

y
x→ →

= =
0 0

2

1 2

1

1
lim lim

QP
P P

OM
OP

=cos x, or Dxsin x = cos x. It may be easily and 

similarly shown that Dxcos x = -sin x. 
Our main interest is in the second 
derivative. We see that the derivative of 
sin x is cos x, and that the derivative of 
cos x is -sin x. 

Differentiating again we obtain the 
second derivative of sin x as -sin x, and 
the second derivative of cos x as -cos x. 

The sine and cosine and their linear 
combinations are the only functions 
which when differentiated twice give us 
the second differential coefficient equal 
and of opposite sign to the original function. In symbols 

d x
dx

2

2
(sin ) = - sin x; and d x

dx
2

2
(cos ) = - cos x. 
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In physics we deal with many processes which are structurally periodic, which 
means that a definite physical condition constantly recurs after equal intervals of 
‘time’. The number of seconds or fractions of seconds within which the process runs 
its course is called the period. We know already that the simplest periodic functions 
are sine and cosine functions of the type 
    sin(x+2nπ) = sin x, and 
    cos(x+2nπ) = cos x, where n may have any integral 
value. Furthermore we have already seen that the first derivatives, therefore all 
derivatives of such functions are likewise simple sine and cosine functions. In 
particular, the second derivatives of the sine and cosine functions are likewise sine 
and cosine functions taken with the opposite algebraic sign. 

If we express the variability of a process as a function of ‘time’, that is, by an 
equation of the form S = F(t), then in a periodic process, F(t1+nT) = F(t1), where T 
is the period and n any integer. If the process repeats itself, as in a periodic process, 
we must have 

 dF
dt

dF
dt

t t nT t t= + =

=
1 1

and d F
dt

d F
dt

t t nT t t

2

2
1

2

2
1= + =

= . , 

but, as we have already seen, the sine and cosine functions satisfy these conditions. 

A process which can be described by an equation of the type S = A sin 2π
T

 is 

called a harmonic vibration or, a ‘pure sine vibration’, or simply a ‘vibration’ or 
‘oscillation’. The constant A, which represents the maximum value of the 
displacement on either side, is called the amplitude. The period T is called the ‘time 
of vibration’, its reciprocal value which gives the number of vibrations in a unit of 
‘time’ is called the vibration number or frequency. 

As the second derivatives of sine and cosine functions are equal to the original 
functions taken with the opposite signs, we can describe harmonic vibrations by 
differential equations of the first degree (linear) and of the second order of the 

special type d S
dt

2

2
= -a2S, where S = A sin( 2πt

T
+ε), A representing the amplitude, T 

the period, ε the phase of the vibration. The factor of proportionality a is taken as 
the square of any arbitrary real quantity to indicate that the right-hand side must 
always have the opposite sign to that of S. 

The propagation of a vibration is called an advancing plane wave which has both 
velocity and direction. 

Fourier has shown that any given form of wave may be represented by the 
superposition of a series of sine-waves, which gives sine-waves great theoretical and 
practical importance. 

In writing this chapter I had two main aims. One was to briefly indicate the 
essential semantic factors involved in the differential methods. The other, to make 
the general reader and even specialists who are not mathematicians acquainted with 
some terms and rudiments of method which will be necessary for further discussion. 
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The differential methods involve semantic factors essential for a A -system, the 
∞-valued semantics of probability and for sanity and cannot be longer disregarded. 

The main pressing issues are twofold. One, to formulate methods which would 
impart the A  semantic reactions of the calculus, which need not involve any 
technicalities, and can be imparted in the most elementary home or school 
education. The other is to draw the attention of specialists to these semantic 
problems so that they will work them out. 

An attempt to solve the first issue has been undertaken in the present volume. 
The second task will probably be accomplished in the not too distant future. 

It is earnestly suggested to all scientists, professional men and teachers, who are 
not mathematicians, to become familiar with differential methods and so acquire the 
appropriate semantic reactions. Experience, in many cases, has shown that this will 
assist them in acquiring semantic balance and ‘mental’ efficiency. Teachers and 
physicians in particular, would be greatly helped in their efforts to train children and 
patients in the A  reactions. The benefit is not in any ‘calculations’ whatsoever, but 
in the method and the related psycho-logical reactions. 

There is an excellent, short, most elementary and amusing account of the 
calculus by Sylvanus P. Thompson Calculus Made Easy (Macmillan) which, for the 
present, is all that is needed for this purpose. 


