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PART V 
 

ON THE NON-ARISTOTELIAN LANGUAGE 
CALLED MATHEMATICS 

 
Once a statement is cast into mathematical form it may be manipulated in 

accordance with these rules and every configuration of the symbols will represent 
facts in harmony with and dependent on those contained in the original statement. 
Now this comes very close to what we conceive the action of the brain structures to 
be in performing intellectual acts with the symbols of ordinary language. In a sense, 
therefore, the mathematician has been able to perfect a device through which a part 
of the labor of logical thought is carried on outside the central nervous system with 
only that supervision which is requisite to manipulate the symbols in accordance 
with the rules. (583) HORATIO B. WILLIAMS 

 
The toughminded suggest that the theory of the infinite elaborated by the great 

mathematicians of the Nineteenth and Twentieth Centuries without which 
mathematical analysis as it is actually used today is impossible, has been committing 
suicide in an unnecessarily prolonged and complicated manner for the past half 
century. (22) E. T. BELL 

 
The solution goes on famously; but just as we have got rid of the other unknowns, 

behold ! V disappears as well, and we are left with the indisputable but irritating 
conclusion— 

0 = 0 
This is a favourite device that mathematical equations resort to, when we propound 

stupid questions. (149) A. S. EDDINGTON 
 
Who shall criticize the builders ? Certainly not those who have stood idly by 

without lifting a stone. (23) E. T. BELL 
 
. . . let me remind any non-mathematicians . . . that when a mathematician lays 

down the elaborate tools by which he achieves precision in his own domain, he is 
unprepared and awkward in handling the ordinary tools of language. This is why 
mathematicians always disappoint the expectation that they will be precise and 
reasonable and clear-cut in their statements about everyday affairs, and why they are, 
in fact, more fallible than ordinary mortals. (529) OSWALD VEBLEN 



 246



 247

CHAPTER XVIII 
 

MATHEMATICS AS A LANGUAGE OF A STRUCTURE SIMILAR TO THE 
STRUCTURE OF THE WORLD 

 

To-day there are not a few physicists who, like Kirchhoff and Mach regard the task 
of physical theory as being merely a mathematical description (as economical as 
possible) of the empirical connections between observable quantities, i. e. a 
description which reproduces the connection as far as possible, without the 
intervention of unobservable elements. (466) E. SCHRÖDINGER 
 

But in the prevalent discussion of classes, there are illegitimate transitions to the 
notions of a ‘nexus’ and of a ‘proposition.’ The appeal to a class to perform the 
services of a proper entity is exactly analogous to an appeal to an imaginary terrier to 
kill a real rat. (578) A. N. WHITEHEAD 

 
Roughly it amounts to this: mathematical analysis as it works today must make use 

of irrational numbers (such as the square root of two); the sense if any in which such 
numbers exist is hazy. Their reputed mathematical existence implies the disputed 
theories of the infinite. The paradoxes remain. Without a satisfactory theory of 
irrational numbers, among other things, Achilles does not catch up with the tortoise, 
and the earth cannot turn on its axis. But, as Galileo remarked, it does. It would seem 
to follow that something is wrong with our attempts to compass the infinite. (22)E. T. 
BELL 

The map is not the thing mapped. When the map is identified with the thing 
mapped we have one of the vast melting pots of numerology. (604) E. T. BELL 

The theory of numbers is the last great uncivilized continent of mathematics. It is 
split up into innumerable countries, fertile enough in themselves, but all more or less 
indifferent to one another’s welfare and without a vestige of a central, intelligent 
government. If any young Alexander is weeping for a new world to conquer, it lies 
before him. (23) E. T. BELL 

 
The present work—namely, the building of a non-aristotelian system, and an 

introduction to a theory of sanity and general semantics—depends, fundamentally, 
for its success on the recognition of mathematics as a language similar in structure 
to the world in which we live. 

The maze of often unconnected knowledge we have gathered in the fields with 
which this part is dealing is so tremendous that it would require several volumes to 
cover the field even partially. Under such conditions, it is impossible to deal with 
the subject in any other way than by very careful selection, and so I shall, therefore, 
say only as much as is necessary for my present semantic purpose. 

It is a common experience of our race that with a happy generalization many 
unconnected parts of our knowledge become connected; many ‘mysteries’ of 
science become simply a linguistic issue, and then the mysteries vanish. New 
generalizations introduce new attitudes (evaluation) which, as usual, seriously 
simplify the problems for a new generation. In the present work, we are treating 
problems from the point of view of such a generalization, of wide application; 
namely, structure, which is forced upon us by the denial of the ‘is’ of identity. ; so 
that structure becomes the only link between the objective and verbal levels. The 
next consequence is that structure alone is the only possible content of knowledge. 
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Investigating structure, we have found that structure can be defined in terms of 
relations; and the latter, for special purposes, in terms of multi-dimensional order. 
Obviously, to investigate structure, we must look for relations, and so for multi-
dimensional order. The full application of the above principles becomes our guide 
for future enquiry. 

In the recent past, we have become accustomed to such arguments as, for 
instance, that the theory of Einstein has to be accepted on ‘epistemological’ 
grounds. Naturally, the scientist or the layman who has heard the last term, but 
never bothered to ascertain that it means ‘according to the structure of human 
knowledge’, would recognize no necessity to accept something which violates all 
his habitual s.r, for reasons about which he does not know or care. But if we say that 
the Einstein theory has to be accepted, for the ‘time’ being, at least, as an 
irreversible structural linguistic progress, this statement carries for many quite a 
different verbal and semantic implication, and one worth considering. 

Mathematics has, of late, become so extremely elaborate and complex that it 
takes practically a lifetime to specialize in even one of its many fields. Here and 
there notions of extreme creative generality appear, which help us to see relations 
and dependence between formerly non-connected fields. For instance, the 
arithmetization of mathematics, or the theory of groups, or the theory of aggregates, 
has each become such a supreme generalization. At present, there is a general 
tendency among all of us, scientists included, to confuse orders of abstractions. This 
results in a psycho-logical semantic blockage and in the impossibility of seeing 
broader issues clearly. 

Some of the structural issues are still but little understood, and, in writing this 
chapter, I lay myself open to a reproach from the layman that I have given too much 
attention to mathematics, and from the professional mathematician that I have given 
too little. My reply is that what is said here is necessary for rounding up the 
semantic foundations of the system, and that I explain only enough to carry the main 
points of structure and as semantic suggestions for further semantic researches. 

I have found that among some physicists and some mathematicians the thesis 
that mathematics is the only language which, in 1933, is similar in structure to the 
world, is not always acceptable. As to the second thesis, the similarity of its 
structure to our nervous system, some even seem to feel that this statement borders 
on the sacrilegious ! These objectors, apparently, believe that I ascribe more to 
mathematics than is just. Some physicists point out to me the non-satisfactory 
development of mathematics, and they seem to confuse the inadequacy of a given 
mathematical theory with the general m.o structure of mathematics. Thus, if some 
physical experimental investigation is conducted—for 



instance, on high pressure—and the older theories predict a behaviour exemplified 
by the curve (A), while the experimental new data show that the actual 
curve is (B), such a result would show unmistakably that the first theory 
is not structurally correct. But, in itself, this result does not affect the 
correctness of a statement about the general structure of mathematics 
which can account for both curves. 

Until very lately, we had a very genuine problem in physics with the quantum 
phenomena which seem to proceed by discrete steps, while our mathematics is 
fundamentally based on assumptions of continuity. Here we had seemingly a serious 
structural discrepancy, which, however, has been satisfactorily overcome by the 
wave theory of the newer quantum mechanics, explained in Part X, where the 
discontinuities are accounted for, in spite of the use of differential equations and, 
therefore, of continuous mathematics. 

But, if we start with fundamental assumptions of continuity, we always can 
account for discontinuities by introducing wave theories or some similar devices. 
Therefore, it is impossible, in our case, to argue from the wave theory (for instance) 
to the structure of mathematics, or vice versa, without a fundamental and 
independent general structural analysis, which alone can elucidate the problem at 
hand. 

Mathematicians may object on the ground that the new revision of the 
foundation of mathematics, originated by Brouwer and Weyl, challenges the 
‘existence’ of irrational numbers. , and, therefore, destroys the very foundations of 
continuity and the legitimacy of existing mathematics. 

In answer to such a criticism, we should notice, first, that the current ‘continuity’ 
is of two kinds. One is of a higher grade, and is usually called by this name; the 
other continuity is of a lower grade and is usually called ‘compactness’. The new 
revision challenges the higher continuity, but does not affect compactness, which, as 
a result, will, perhaps, have to suffice in the future for all mathematics, since 
compactness is sufficient to meet all psycho-logical requirements, once the problems 
of ‘infinity’ are properly understood. 

A structural independent analysis of mathematics, treated as a language and a 
form of human behaviour, establishes the similarity of this language to the 
undeniable structural characteristics of this world and of the human nervous system. 
These few and simple structural foundations are arrived at by inspection of known 
data and may be considered as well established. 
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The existing definitions of mathematics are not entirely satisfactory. They are 
either too broad, or too narrow, or do not emphasize enough the main characteristics 
of mathematics. A semantic definition of mathematics should be broad enough to 
cover all existing branches of mathematics; should be narrow enough to exclude 
linguistic disciplines which are not considered mathematical by the best judgement 
of specialists, and should also be flexible enough to remain valid, no matter what the 
future developments of mathematics may be. 

I have said that mathematics is the only language, at present, which in structure, 
is similar to the structure of the world and the nervous system. For purposes of 
exposition, we shall have to divide our analysis accordingly, remembering, in the 
meantime, that this division is, in a way, artificial and optional, as the issues 
overlap. In some instances, it is really difficult to decide under which division a 
given aspect should be analysed. The problems are very large, and for full 
discussion would require volumes; so we have to limit ourselves to a suggestive 
sketch of the most important aspects necessary for the present investigation. 

From the point of view of general semantics, mathematics, having symbols and 
propositions, must be considered as a language. From the psychophysiological point 
of view, it must be treated as an activity of the human nervous system and as a form 
of the behaviour of the organisms called humans. 

All languages are composed of two kinds of words: (1) Of names for the 
somethings on the un-speakable level, be they external objects. , or internal feelings, 
which admittedly are not words, and (2) of relational terms, which express the 
actual, or desired, or any other relations between the un-speakable entities of the 
objective level. 

When a ‘quality’ is treated physiologically as a reaction of an organism to a 
stimulus, it also becomes a relation. It should be noticed that often some words can 
be, and actually are, used in both senses; but, in a given context, we can always, by 
further analysis, separate the words used into these two categories. Numbers are not 
exceptions; we can use the labels ‘one’, ‘two’. , as numbers (of which the character 
will be explained presently) but also as names for anything we want, as, for 
instance, Second or Third Avenue, or John Smith I or John Smith II. When we use 
numbers as names, or labels for anything, we call them numerals; and this is not a 
mathematical use of ‘one’, ‘two’. , as these names do not follow mathematical rules. 
Thus, Second Avenue and Third Avenue cannot be added together, and do not give 
us Fifth Avenue in any sense whatever. 

Names alone do not produce propositions and so, by themselves, say nothing. 
Before we can have a proposition and, therefore, meanings, 
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the names must be related by some relation-word, which, however, may be explicit 
or implied by the context, the situation, by established habits of speech, . The 
division of words into the above two classes may seem arbitrary, or to introduce an 
unnecessary complication through its simplicity; yet, if we take modern knowledge 
into account, we cannot follow the grammatical divisions of a primitive-made 
language, and such a division as I have suggested above seems structurally correct 
in 1933. 

Traditionally, mathematics was divided into two branches: one was called 
arithmetic, dealing with numbers; the other was called geometry, and dealt with 
such entities as ‘line’, ‘surface’, ‘volume’, . Once Descartes, lying in bed ill, 
watched the branches of a tree swaying under the influence of a breeze. It occurred 
to him that the varying distances of the branches from the horizontal and vertical 
window frames could be expressed by numbers representing measurements of the 
distances. An epoch-making step was taken: geometrical relations were expressed 
by numerical relations; it meant the beginning of analytical geometry and the 
unification and arithmetization of mathematics. 

Further investigation by the pioneers Frege, Peano, Whitehead, Russell, Keyser, 
and others has revealed that ‘number’ can be expressed in ‘logical terms’—a quite 
important discovery, provided we have a valid ‘logic’ and structurally correct non-el 
terms. 

Traditionally, too, since Aristotle, and, in the opinion of the majority, even 
today, mathematics is considered as uniquely connected with quantity and 
measurement. Such a view is only partial, because there are many most important 
and fundamental branches of mathematics which have nothing to do with quantity 
or measurement—as, for instance, the theory of groups, analysis situs, projective 
geometry, the theory of numbers, the algebra of ‘logic’, . 

Sometimes mathematics is spoken about as the science of relations, but 
obviously such a definition is too broad. If the only content of knowledge is 
structural, then relations, obvious, or to be discovered, are the foundation of all 
knowledge and of all language, as stated in the division of words given above. Such 
a definition as suggested would make mathematics co-extensive with all language, 
and this, obviously, is not the case. 

Before offering a semantic definition of mathematics, I introduce a synoptical 
table taken from Professor Shaw’s The Philosophy of Mathematics, which he calls 
only suggestive and ‘doubtless incomplete in many ways’. I use this table because it 
gives a modern list of the most important mathematical terms and disciplines 
necessary for the purpose of this work, indicating, also, in a way, their evolution and 
structural interrelations. 
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 CENTRAL PRINCIPLES OF MATHEMATICS* 
[figure] 

*This table differs slightly from the one printed in The Philosophy of 
Mathematics. The corrections have been made by Professor Shaw and kindly 
communicated to me by letter. 
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A semantic definition of mathematics may run somehow as follows: 
Mathematics consists of limited linguistic schemes of multiordinal relations capable 
of exact treatment at a given date. 

After I have given a semantic definition of number, it will be obvious that the 
above definition covers all existing disciplines considered mathematical. However, 
these developments are not fixed affairs. Does that definition provide for their future 
growth ? By inserting as a fundamental part of the definition ‘exact treatment at a 
given date’, it obviously does. Whenever we discover any relations in any fields 
which will allow exact ‘logical’ treatment, such a discipline will be included in the 
body of linguistic schemes called mathematics, and, at present, there are no 
indications that these developments can ever come to an end. When ‘logic’ becomes 
an ∞-valued ‘structural calculus’, then mathematics and ‘logic’ will merge 
completely and become a general science of m.o relations and multi-dimensional 
order, and all sciences may become exact. 

It is necessary to show that this definition is not too broad, and that it eliminates 
notions which are admittedly non-mathematical, without invalidating the statement 
that the content of all knowledge is structural, and so ultimately relational. The word 
‘exact’ eliminates non-mathematical relations. If we enquire into the meaning of the 
word ‘exact’, we find from experience that this meaning is not constant, but that it 
varies with the date, and so only a statement ‘exact at a given date’ can have a 
definite meaning. 

We can analyse a simple statement, ‘grass is green’ (the ‘is’ here is the ‘is’ of 
predication, not of identity) , which, perhaps, represents an extreme example of a 
non-mathematical statement; but a similar reasoning can be applied to other 
examples. Sometimes we have a feeling which we express by saying, ‘grass is 
green’. Usually, such a feeling is called a ‘perception’. But is such a process to be 
dismissed so simply, by just calling it a name, ‘perception’ ? It is easy to ‘call names 
under provocation’, as Santayana says somewhere; but does that exhaust the 
question ? 

If we analyse such a statement further, we find that it involves comparison, 
evaluation in certain respects with other characters of experience. , and the 
statement thus assumes relational characteristics. These, in the meantime, are non-
exact and, therefore, non-mathematical. If we carry this analysis still further, 
involving data taken from chemistry, physics, physiology, neurology. , we involve 
relations which become more and more exact, and, finally, in such terms as ‘wave-
length’, ‘frequency’. , we reach structural terms which allow of exact 1933 
treatment. It is true that a language of ‘quality’ conceals relations, sometimes very 
effectively; but once ‘quality’ is taken as the reaction of a given organism 



to a stimulus, the term used for that ‘quality’ becomes a name for a very complex 
relation. This procedure can be always employed, thus establishing once more the 
fundamental character of relations. 

These last statements are of serious structural and semantic importance, being 
closely connected with the A , fundamental, and undeniable negative premises. 
These results can be taught to children very simply; yet this automatically involves 
an entirely new and modern method of evaluation and attitude toward language, 
which will affect beneficially the, as yet entirely disregarded, s.r. 

We must consider, briefly, the terms ‘kind’ and ‘degree’, as we shall need them 
later. Words, symbols. , serve as forms of representation and belong to a different 
universe—the ‘universe of discourse’—since they are not the un-speakable levels 
we are speaking about. They belong to a world of higher abstractions and not to the 
world of lower abstractions given to us by the lower nerve centres. 

Common experience and scientific investigations (more refined experience) 
show us that the world around us is made up of absolute individuals, each different 
and unique, although interconnected. Under such conditions it is obviously optional 
what language we use. The more we use the language of diverse ‘kind’, the sharper 
our definitions must be. Psycho-logically, the emphasis is on difference. Such 
procedure may be a tax on our ingenuity, but by it we are closer to the structural 
facts of life, where, in the limit, we should have to establish a ‘kind’ for every 
individual. 

In using the term ‘degree’, we may be more vague. We proceed by similarities, 
but such a treatment implies a fundamental interconnection between different 
individuals of a special kind. It implies a definite kind of metaphysics or structural 
assumptions—as, for instance, a theory of evolution. As our ‘knowledge’ is the 
result of nervous abstracting, it seems, in accordance with the structure of our 
nervous system, to give preference to the term ‘degree’ first, and only when we have 
attained a certain order of verbal sharpness to pass to a language of ‘kind’, if need 
arises. 

The study of primitive languages shows that, historically, we had a tendency for 
the ‘kind’ language, resulting in over-abundance of names and few relation-words, 
which makes higher analysis impossible. Science, on the other hand, has a 
preference for the ‘degree’ language, which, ultimately, leads to mathematical 
languages, enormous simplicity and economy of words, and so to better efficiency, 
more intelligence, and to the unification of science. Thus, chemistry became a 
branch of physics, physics, a branch of geometry; geometry merges with analysis, 
and 
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analysis merges with general semantics; and life itself becomes a physico-chemical 
colloidal occurrence. The language of ‘degree’ has very important relational, 
quantitative, and order implications, while that of ‘kind’ has, in the main, 
qualitative implications, often, if not always, concealing relations, instead of 
expressing them. 

The current definition of ‘number’, as formulated by Frege and Russell, reads: 
‘The number of a class is the class of all those classes that are similar to it’.1 This 
definition is not entirely satisfactory: first, because the multiordinality of the term 
‘class’ is not stated; second, it is A, as it involves the ambiguous (as to the order of 
abstractions) term ‘class’. What do we mean by the term ‘class’ ? Do we mean an 
extensive array of absolute individuals, un-speakable by its very character, such as 
some seen aggregate, or do we mean the spoken definition or description of such 
un-speakable objective entities ? The term implies, then, a fundamental confusion of 
orders of abstractions, to start with—the very issue which we must avoid most 
carefully, as positively demanded by the non-identity principle. Besides, if we 
explore the world with a ‘class of classes’. , and obtain results also of ‘class of 
classes’, such procedure throws no light on mathematics, their applications and their 
importance as a tool of research. Perhaps, it even increases the mysteries 
surrounding mathematics and conceals the relations between mathematics and 
human knowledge in general. 

We should expect of a satisfactory definition of ‘number’ that it would make the 
semantic character of numbers clear. Somehow, through long experience, we have 
learned that numbers and measurement have some mysterious, sometimes an 
uncanny, importance. This is exemplified by mathematical predictions, which are 
verified later empirically. Let me recall only the discovery of the planet Neptune 
through mathematical investigations, based on its action upon Uranus, long before 
the astronomer actually verified this prediction with his telescope. Many, a great 
many, such examples could be given, scientific literature being full of them. Why 
should mathematics and measurement be so extremely important ? Why should 
mathematical operations of a given Smith, which often seem innocent (and 
sometimes silly enough) give such an unusual security and such undeniably 
practical results ? 

Is it true that the majority of us are born mathematical imbeciles ? Why is there 
this general fear of, and dislike for, mathematics ? Is mathematics really so difficult 
and repelling, or is it the way mathematics is treated and taught by mathematicians 
that is at fault ? If some light can be thrown on these perplexing semantic problems, 
perhaps we shall face a scientific revolution which might deeply affect our 
educational 



system and may even mark the beginning of a new period in standards of evaluation, 
in which mathematics will take the place which it ought to have. Certainly, there 
must be something the matter with our epistemologies and ‘psychologies’ if they 
cannot cope with these problems. 

A simple explanation is given by a new A  analysis and a semantic definition of 
numbers. What follows is written, in the main, for non-mathematicians, as the word 
‘semantic’ indicates, but it is hoped that professional mathematicians (or some, at 
least) may be interested in the meanings of the term ‘number’, and that they will not 
entirely disregard it. As semantic, the definition seems satisfactory; but, perhaps, it 
is not entirely satisfactory for technical purposes, and the definition would have to 
be slightly re-worded to satisfy the technical needs of the mathematicians. In the 
meantime, the gains are so important that we should not begrudge any amount of 
labour in order to produce finally a mathematical and, this time, A  semantic 
definition of numbers. 

As has already been mentioned, the importance of notation is paramount. Thus 
the Roman notation for number—I, II, III, IV, V, VI. ,— was not satisfactory and 
could not have led to modern developments in mathematics, because it did not 
possess enough positional and structural characteristics. Modern mathematics began 
when it was made possible by the invention or discovery of positional notation. We 
use the symbol ‘1’ in 1, 10, 100, 1000. , in which, because of its place, it had 
different values. In the expression ‘1’, the symbol means ‘one unit’; in 10, the 
symbol ‘1’ means ten units; in 100, the symbol ‘1’ means one hundred units, . 

To have a positional notation, we need a symbol ‘0’, called zero, to indicate an 
empty column and, at least, one symbol ‘1’. The number of special symbols for 
‘number’ depends on what base we accept. Thus, in a binary system, with the base 
2, our 1 is represented by 1; our 2, by a unity in the second place and a zero in the 
first place, thus by 10; our 3, by 11; our 4, by a unity in the third place and two 
zeros in the first and second places; namely, 100; our 5, by 101; our 6, by 110; 7, by 
111; 8, by 1000; 9, by 1001; . . . 15, by 1111; 16, by 10000, . In a binary system, we 
needed only the two symbols, 1 and 0. For a system with the base 3, we would need 
three symbols, 1, 2, 0: our 1 would be represented by 1; our 2, by 2; 3, by 10; 4, by 
11; 5, by 12; 6, by 20, . In our decimal system, obviously, we need 10 symbols, 1, 2, 
3, 4, 5, 6, 7, 8, 9, 0. 

For more details on notation, the interested reader is referred to the fascinating 
and elementary book of Professor Danzig, Number the Language of Science. Here 
we only emphasize what is necessary for our purpose. Every system has its 
advantages and drawbacks. Thus, in 

 256



 257

the binary system, still used by some savage tribes, of which we retain traces when 
we speak of couples, or pairs, or braces, we get an enormous simplicity in 
operations by using only two symbols, 1 and 0. It should be remembered that, in 
every system, the tables of addition and multiplication must be memorized. In the 
binary system, these tables are reduced to 1+1=10 and 1×1=1, while in our decimal 
system, each table has 100 entries. But what we gain in simplicity by a low base-
number is offset very seriously by the cumbersomeness of the notation. As Danzig 
tells us, our number 4096 is represented in a binary system by 1,000,000,000,000. 
That we adopted the decimal system is probably a physiological accident, because 
we have ten fingers. The savage, with his binary system, did not reach even the 
finger stage; he is still in the fist stage. 

For practical purposes, it is simpler to have a base which has many divisors, as, 
for instance, 12. We still use this duodecimal system when we divide a foot into 
twelve inches, or a shilling into twelve pennies, or count by dozens or gross. It 
seems that mathematicians would probably select a prime number for a base, but the 
gain would be so slight and the difficulty of offsetting a physiological habit so 
tremendous, that this will probably never happen.2 

From what was said already, it is, perhaps, clear that mathematics requires a 
positional notation in which we must have a symbol for ‘1’ and zero, at least. For 
these and other reasons, the two numbers 1 and 0 are somehow unusually important. 
Even in our decimal system we generate numbers by adding 1 to its predecessor. 
Thus 1+1=2, 2+1=3. , and we must enquire into the semantic character of these 
numbers. 

The notions of matching, comparing, measuring, quantity, equality. , are all 
interwoven and, by necessity, involve a circularity in definitions and implications if 
the analysis is carried far enough. The interested reader may be referred to the 
chapter on equality in Whitehead’s The Principle of Relativity to learn more on this 
subject. 

In the evolution of mathematics, we find that the notions of ‘greater’, ‘equal’, 
and ‘less’ precede the notion of numbers. Comparison is the simplest form of 
evaluation; the first being a search for relations; the second, a discovery of exact 
relations. This process of search for relations and structure is inherent and natural in 
man, and has led not only to the discovery of numbers, but also has shaped their two 
aspects; namely, the cardinal and the ordinal aspects. For instance, to ascertain 
whether the number of persons in a hall is equal to, greater than, or less than the 
number of seats, it is enough to ascertain if all seats are 



occupied and there are no empty seats and no persons standing; then we would say 
that the number of persons is equal to the number of seats, and a symmetrical 
relation of equality would be established. If all seats were occupied and there were 
some persons standing in the hall, or if we found that no one was standing, yet not 
all seats were occupied, we would establish the asymmetrical relation of greater or 
less. 

In the above processes, we were using an important principle; namely, that of 
one-to-one correspondence. In our search for relations, we assigned to each seat one 
person, and reached our conclusions without any counting. This process, based on 
the one-to-one correspondence, establishes what is called the cardinal number. It 
gives us specific relational data about this world; yet it is not enough for counting 
and for mathematics. To produce the latter, we must, first of all, establish a definite 
system of symbolism, based on a definite relation for generating numbers; for 
instance, 1+1=2, 2+1=3. , which establishes a definite order. Without this ordinal 
notion, neither counting nor mathematics would be possible; and, as we have 
already seen, order can be used for defining relations, as the notions of relation and 
order are interdependent. Order, also, involves asymmetrical relations. 

If we consider the two most important numbers, 0 and 1, we find that in the 
accepted symbolism, if a=b, a-b=0; and if a=b, a/b=b/b=1; so that both 
fundamental numbers express, or can be interpreted as expressing, a symmetrical 
relation of equality. 

If we consider any other number—and this applies to all kinds of numbers, not 
only to natural numbers—we find that any number is not altered by dividing it by 
one, thus, 2/1=2, 3/1=3. , in general, N/1=N; establishing the asymmetrical relation, 
unique and specific in a given case that N is N times more than one. 

If we consider, further, that 2/1=2, 3/1=3, and so on, are all different, specific, 
and unique, we come to an obvious and A  semantic definition of number in terms 
of relations, in which 0 and 1 represent unique and specific symmetrical relations 
and all other numbers also unique and specific asymmetrical relations. Thus, if we 
have a result ‘5’, we can always say that the number 5 is five times as many as one. 
Similarly, if we introduce apples. Five apples are five times as many as one apple. 
Thus, a number in any form, ‘pure’ or ‘applied’, can always be represented as a 
relation, unique and specific in a given case; and this is the foundation of the 
exactness of dealing with numbers. For instance, to say that a is greater than b also 
establishes an asymmetrical relation, but it is not unique and specific; but when we 
say that a is five 
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times greater than b, this relation is asymmetrical, exact, unique, and specific. 
The above simple remarks are not entirely orthodox. That 5/1=5 is very 

orthodox, indeed; but that numbers, in general, represent indefinitely many exact, 
specific, and unique, and, in the main, asymmetrical relations is a structural notion 
which necessitates the revision of the foundations of mathematics and their 
rebuilding on the basis of new semantics and a future structural calculus. When we 
say ‘indefinitely many’, this means, from the reflex point of view, ‘indefinitely 
flexible’, or ‘fully conditional’ in the semantic field, and, therefore, a prototype of 
human semantic reactions (see Part VI). The scope of the present work precludes the 
analysis of the notion of the lately disputed ‘irrational’; but we must state that this 
revision requires new psycho-logical and structural considerations of fundamental 
‘logical’ postulates and of the problems of ‘infinity’. If, by an arbitrary process, we 
postulate the existence of a ‘number’ which alters all the while, then, according to 
the definition given here, such expressions should be considered as functions, 
perhaps, but not as a number, because they do not give us unique and specific 
relations. 

These few remarks, although suggestive to the mathematician, do not, in any 
way, exhaust the question, which can only be properly presented in technical 
literature in a postulational form. 

It seems that mathematicians, no matter how important the work which they 
have produced, have never gone so far as to appreciate fully that they are willy-nilly 
producing an ideal human relational language of structure similar to that of the 
world and to that of the human nervous system. This they cannot help, in spite of 
some vehement denials, and their work should also be treated from the semantic 
point of view. 

Similarly with measurement. From a functional or actional and semantic point of 
view, measurement represents nothing else but a search for empirical structure by 
means of extensional, ordered, symmetrical, and asymmetrical relations. Thus, when 
we say that a given length measures five feet, we have reached this conclusion by 
selecting a unit called ‘foot’, an arbitrary and un-speakable affair, then laying it end 
to end five times in a definite extensional order and so have established the 
asymmetrical, and, in each case, unique and specific relation, that the given entity 
represents, in this case, five times as many as the arbitrarily selected unit. 

Objection may be raised that the formal working out of a definition of numbers 
in terms of relations, instead of classes, would be very 
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laborious, and would also involve a revision of the foundations of mathematics. This 
can hardly be denied; but, in the discussions of the foundations, the confusion of 
orders of abstractions is still very marked, thereby resulting in the manufacture of 
artificial semantic difficulties. Moreover, the benefits of such a definition, in 
eliminating the mysteries about mathematics, are so important that they by far 
outweigh the difficulties. 

As the only possible content of knowledge is structural, as given in terms of 
relations and multiordinal and multi-dimensional order; numbers, which establish an 
endless array of exact, specific, and, in each case, unique, relations are obviously the 
most important tools for exploring the structure of the world, since structure can 
always be analysed in terms of relations. In this way, all mysteries about the 
importance of mathematics and measurement vanish. The above understanding will 
give the student of mathematics an entirely different and a very natural feeling for 
his subject. As his only possible aim is the study of structure of the world, or of 
whatever else, he must naturally use a relational tool to explore this complex of 
relations called ‘structure’. A most spectacular illustration of this is given in the 
internal theory of surfaces, the tensor calculus. , described in Part VIII. 

In all measurements, we select a unit of a necessary kind, for a given case, and 
then we find a unique and specific relation as expressed by a number, between the 
given something and the selected unit. By relating different happenings and 
processes to the same unit-process, we find, again, unique and specific 
interrelations, in a given case, between these events, and so gather structural (and 
most important, because uniquely possible) wisdom, called ‘knowledge’, ‘science’, . 

If we treat numbers as relations, then fractions and all operations become 
relations of relations, and so relations of higher order, into the analysis of which we 
cannot enter here, as these are, of necessity, technical. 

It should be firmly grasped, however, that some fundamental human relations to 
this world have not been changed. The primitive may have believed that words were 
things (identification) and so have established what is called the ‘magic of words’ 
(and, in fact, the majority of us still have our s.r regulated by some such 
unconscious identifications); but, in spite of this, the primitive or ‘civilized’ man’s 
words are not, and never could be, the things spoken about, no matter what 
semantic disturbances we might have accompanying their use, or what delusions or 
illusions we may cherish in respect to them. 



At present, of all branches of mathematics the theory of numbers is probably the 
most difficult, obscure. , and seemingly with the fewest applications. With a new A  
definition of numbers in terms of relations, this theory may become a relational 
study of very high order, which, perhaps, will some day become the foundation for 
epistemology and the key for the solution of all the problems of science and life. In 
the fields of cosmology many, if not the majority, of the problems, by necessity, 
cannot be considered as directly experimental, and so the solution must be 
epistemological. 

At present, in our speculations, we are carried away by words, disregarding the 
simple fact that speaking about the ‘radius of the universe’, for instance, has no 
meaning, as it cannot possibly be observed. Perhaps, some day, we shall discover 
that such conversations are the result of our old stumbling block, identification, 
which leads to our being carried away by the sounds of words applicable to 
terrestrial conditions but meaningless in the very small, as discovered lately in the 
newer quantum mechanics, and, in the very large, as applied to the cosmos. An 
important illustration of the retardation of scientific progress, blocked by the 
confusion of orders of abstractions, is shown in the fact that the newer quantum 
mechanics were slow in coming, and though astronomers probably know about it, 
yet they still fail to grasp that expressions such as the ‘radius of the universe’, the 
‘running down of the universe’. , are meaningless outside of psychopathology. 

In this connection, we should notice an extremely interesting and important 
semantic characteristic; namely, that the term ‘relation’ is not only multiordinal but 
also non-el, as it applies to ‘senses’ and ‘mind’. Relations are usually found 
empirically; so in a language of relations we have a language of similar structure to 
the world and a unique means for predictability and rationality. 

Let me again emphasize that, from time immemorial, things have not been 
words; the only content of knowledge has been structural; mathematics has dealt, in 
the main, with numbers; no matter whether we have understood the character of 
numbers or not, numbers have expressed relations and so have given us structural 
data willy-nilly, . This explains why mathematics and numbers have, since time 
immemorial, been a favorite field, not only for speculations, but also why, in 
history, we find so many religious semantic disturbances connected with numbers. 
Mankind has somehow felt instinctively that in numbers we have a potentially 
endless array of unique and specific exact relations, which ultimately give us 
structure, the last being the only possible content of knowledge, because words are 
not things. 

 261



 262

As relations, generally, are empirically present, and as man and his ‘knowledge’ 
is as ‘natural’ as rocks, flowers, and donkeys, we should not be surprised to find that 
the unique language of exact. , relations called mathematics is, by necessity, the 
natural language of man and similar in structure to the world and our nervous 
system. 

As has already been stated, it is incorrect to argue from the structure of 
mathematical theories to the structure of the world, and so try to establish the 
similarity of structure; but that such enquiry must be independent and start with 
quite ordinary structural experiences, and only at a later stage proceed to more 
advanced knowledge as given by science. Because this analysis must be 
independent, it can also be made very simple and elementary. All exact sciences 
give us a wealth of experimental data to establish the first thesis on similarity of 
structure; and it is unnecessary to repeat it here. I will restrict myself only to a 
minimum of quite obvious facts, reserving the second thesis—about the similarity of 
structure with our nervous system—for the next chapter. 

If we analyse the silent objective level by objective means available in 1933, say 
a microscope, we shall find that whatever we can see, handle. , represents an 
absolute individual, and different from anything else in this world. We discover, 
thus, an important structural fact of the external world; namely, that in it, everything 
we can see, touch. , that is to say, all lower order abstractions represent absolute 
individuals, different from everything else. 

On the verbal level, under such empirical conditions, we should then have a 
language of similar structure; namely, one giving us an indefinite number of proper 
names, each different. We find such a language uniquely in numbers, each number 
1, 2, 3. , being a unique, sharply distinguishable, proper name for a relation, and, if 
we wish, for anything else also. 

Without some higher abstractions we cannot be human at all. No science could 
exist with absolute individuals and no relations; so we pass to higher abstractions 
and build a language of say xi, (i=1, 2, 3, . . . n), where the x shows, let us say, that 
we deal with a variable x with many values, and the number we assign to i indicates 
the individuality under consideration. From the structural point of view, such a 
vocabulary is similar to the world around us; it accounts for the individuality of the 
external objects, it also is similar to the structure of our nervous system, because it 
allows generalizations or higher order abstractions, emphasizes the abstracting 
nervous characteristics, . The subscript emphasizes the differences; the letter x 
implies the similarities. 
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In daily language a similar device is extremely useful and has very far-
reaching psycho-logical semantic effects. Thus, if we say ‘pencil1’, ‘pencil2’, . . . 
‘penciln’, we have indicated structurally two main characteristics: (1) the absolute 
individuality of the object, by adding the indefinitely individualizing subscript 1, 2, . 
. . n; and (2) we have also complied with the nervous higher order abstracting 
characteristics, which establish similarity in diversity of different ‘pencils’. From the 
point of view of relations, these are usually found empirically; besides, they may be 
invariant, no matter how changing the world may be. 

In general terms, the structure of the external world is such that we deal always 
on the objective levels with absolute individuals, with absolute differences. The 
structure of the human nervous system is such that it abstracts, or generalizes, or 
integrates. , in higher orders, and so finds similarities, discovering often invariant 
(sometimes relatively invariant) relations. To have ‘similar structure’, a language 
should comply with both structural exigencies, and this characteristic is found in the 
mathematical notation of xi, which can be enlarged to the daily language as ‘Smithi’, 
‘Fidoi’, . , where i=1, 2, 3, . . . n. 

Further objective enquiry shows that the world and ourselves are made up of 
processes, thus, ‘Smithl900’ is quite a different person from ‘Smithl933’. To be 
convinced, it is enough to look over old photographs of ourselves, the above remark 
being structurally entirely general. A language of ‘similar structure’ should cover 
these facts. We find such a language in the vocabulary of ‘function’, ‘propositional 
function’, as already explained, involving also four-dimensional considerations. 

As words are not objects—and this expresses a structural fact—we see that the 
‘is’ of identity is unconditionally false, and should be entirely abolished as such. Let 
us be simple about it. This last semantic requirement is genuinely difficult to carry 
out, because the general el structure of our language is such as to facilitate 
identification. It is admitted that in some fields some persons identify only a little; 
but even they usually identify a great deal when they pass to other fields. Even 
science is not free from identification, and this fact introduces great and artificial 
semantic difficulties, which simply vanish when we stop identification or the 
confusion of orders of abstractions. Thus, for instance, the semantic difficulties in 
the foundations of mathematics, the problems of ‘infinity’, the ‘irrational’. , the 
difficulties of Einstein’s theory, the difficulties of the newer quantum theory, the 
arguments about the ‘radius of the universe’, ‘infinite velocities’, the difficulties in 
the present theory. , . , are due, in the main, to semantic blockages or commitment to 
the structure of the old language—we may call it ‘habit’—which says structurally 
very little, 
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and which I disclose as a semantic disturbance of evaluation by showing the 
physiological mechanism in terms of order. 

If we abolish the ‘is’ of identity, then we are left only with a functional, 
actional. , language elaborated in the mathematical language of function. Under 
such conditions, a descriptive language of ordered happenings on the objective level 
takes the form of ‘if so and so happens, then so and so happens’, or, briefly, ‘if so, 
then so’; which is the prototype of ‘logical’ and mathematical processes and 
languages. We see that such a language is again similar in structure to the external 
world descriptively; yet it is similar to the ‘logical’ nervous processes, and so allows 
us, because of this similarity of structure, predictability and so rationality. 

In the traditional systems, we did not recognize the complete semantic 
interdependence of differences and similarities, the empirical world exhibiting 
differences, the nervous system manufacturing primarily similarities, and our 
‘knowledge’, if worth anything at all, being the joint product of both. Was it not 
Sylvester who said that ‘in mathematics we look for similarities in differences and 
differences in similarities’ ? This statement applies to our whole abstracting process. 

The empirical world is such in structure (by inspection) that in it we can add, 
subtract, multiply, and divide. In mathematics, we find a language of similar 
structure. Obviously, in the physical world these actions or operations alter the 
relations, which are expressed as altered unique and specific relations, by the 
language of mathematics. Further, as the world is full of different shapes, forms, 
curves. , we do not only find in mathematics special languages dealing with these 
subjects, but we find in analytical geometry unifying linguistic means for translation 
of one language into another. Thus any ‘quality’ can be formulated in terms of 
relations which may take the ‘quantitative’ character which, at present, in all cases, 
can be also translated into geometrical terms and methods, giving structures to be 
visualized. 

It is interesting, yet not entirely unexpected, that the activities of the higher 
nervous centres, the conditional reflexes of higher order, the semantic reactions, 
time-binding included, should follow the exponential rules, as shown in my 
Manhood of Humanity. 

In our experience, we find that some issues are additive—as, for instance, if one 
guest is added to a dinner party, we will have to add plates and a chair. Such facts 
are covered by additive methods and the language called ‘linear’ (see Part VIII). In 
many instances—and these are, perhaps, the most important and are strictly 
connected with sub-microscopic processes—the issues are not additive, one atom of 
oxygen 
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‘plus’ two atoms of hydrogen, under proper conditions, will produce water, of 
which the characteristics are not the sum of the characteristics of oxygen and 
hydrogen ‘added’ together, but entirely new characteristics emerge. These may some 
day be taken care of by non-linear equations, when our knowledge has advanced 
considerably. These problems are unusually important and vital, because with our 
present low development and the lack of structural researches, we still keep an 
additive A language, which is, perhaps, able to deal with additive, simple, 
immediate, and comparatively unimportant issues, but is entirely unfit structurally to 
deal with principles which underlie the most fundamental problems of life. 
Similarly, in physics, only since Einstein have we begun to see that the primitive, 
simplest, and easiest to solve linear equations are not structurally adequate. 

One of the most marked structural characteristics of the empirical world is 
‘change’, ‘motion’, ‘waves’, and similar dynamic manifestations. Obviously, a 
language of similar structure must have means to deal with such relations. In this 
respect, mathematics is unique, because, in the differential and integral calculus, the 
four-dimensional geometries and similar disciplines, with all their developments, we 
find such a perfect language to be explained more in detail in the chapters which 
follow. 

It will be profitable for our purpose to discuss, in the next chapter, some of the 
mathematical structural characteristics in connection with their similarity to the 
human nervous system; but here I will add only that, for our purposes, at this 
particular point, we must specially emphasize arithmetical language, which means 
numbers and arithmetical operations, the theory of function, the differential and 
integral calculus (language) and different geometries in their two aspects, ‘pure’ and 
applied. Indeed, Riemann tells us bluntly that the science of physics originated only 
with the introduction of differential equations, a statement which is quite justified, 
but to which I would add, that physics is becoming scientific since we began to 
eliminate from physics semantic disturbances; namely, identification and 
elementalism. This movement was originated, in fact, although not stated in an 
explicit form, by the Einstein theory and the new quantum theories, the psycho-
logical trend of which is formulated in a general semantic theory in the present 
work. 

It is reasonable to consider that metric geometry, and, in particular, the [E]-
system, was derived from touch, and, perhaps, the ‘kinesthetic sense’, and projective 
geometry from sight. 

Although the issues presented here appear extremely simple, and sometimes 
even commonplace, yet the actual working out of the verbal 



schemes is quite elaborate and ingenious, and impossible to analyse here more fully; 
so that only one example can be given. 

The solution of mathematical equations is perhaps to be considered as the central 
problem of mathematics. The word ‘equation’ is derived from Latin aequare, to 
equalize, and is a statement of the symmetrical relation of equality expressed as a=b 
or a-b=0 or a/b=1. An equation expresses the relation between quantities, some of 
which are known, some unknown and to be found. By the solution of an equation, 
we mean the finding of values for the unknowns which will satisfy the equation. 

Linear equations of the type ax=b necessitated the introduction of fractions. 
Linear equations with several variables led to the theory of determinants and 
matrices. , which underwent, later, a tremendous independent development; yet they 
originated in the attempt to simplify the solution of these equations. 

Quadratic equations of the type x2+ax+b=0 can be reduced to the form z2=A, the 
solution of which depends on the extraction of a square root. Here, serious 
difficulties arose, and seemingly necessitated the introduction of ‘irrational’ 
numbers and ordinary complex numbers, involving the square root of minus one 
( −1 = i), a notion which revolutionized mathematics. 

Cubic equations of the form x3+ax2+bx+c=0 necessitated the extraction of cube 
roots, in addition to the problems connected with the solution of quadratic 
equations, and involved more difficulties, which have been analysed in an extensive 
literature. 

Biquadratic equations of the type x4+ax3+bx2+cx+d=0 involve the problems of 
quadratic and cubic equations. When we consider equations of a degree higher than 
the fourth, we find that we cannot solve them by former methods; and 
mathematicians have had to invent theories of substitutions, groups, different special 
functions and similar devices. The solution of differential equations introduced 
further difficulties, allied with the theory of function. 

The linear transformations of algebraic polynomials with two or more variables 
in connection with the theory of determinants, symmetrical functions, differential 
operations. , necessitated the development of an extensive theory of algebraic forms 
which, at present, is far from being complete. 

In the above analysis, I have refrained from giving details, most of which would 
be of no value to the layman, and unnecessary for the mathematician; but it must be 
emphasized that the theory of function and the theory of groups, with their very 
extensive developments, 
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involving the theory of invariance, and, in a way, the theory of numbers, rapidly 
became a unifying foundation upon which practically the whole of mathematics is 
being rebuilt. Many branches of mathematics have become, of late, nothing more 
than a theory of invariance of special groups. 

As to practical applications, there is no possibility to list them, and the number 
increases steadily. But, without the theory of analytic function, for instance, we 
could not study the flow of electricity, or heat, or deal with two-dimensional 
gravitational, electrostatic, or magnetic attractions. The complex number involving 
the square root of minus one was necessary for the development of wireless and 
telegraphy; the kinetic theory of gases and the building of automobile engines 
require geometries of n dimensions; rectangular and triangular membranes are 
connected with questions discussed in the theory of numbers; the theory of groups 
has direct application in crystallography; the theory of invariants underlies the 
theory of Einstein, the theory of matrices and operators has revolutionized the 
quantum theory; and there are other applications in an endless array.3 

In Part VIII, different aspects of mathematics are analysed, but the interested 
reader can be referred also to the above-mentioned book of Professor Shaw for an 
excellent elementary, yet structural, view of the progress of mathematics. 


